1.4. На рис. 20 изображены равные треугольники ABC и MNK и отмечены середины их сторон. Какому из указанных отрезков равен отрезок NR? 1) AF; 2) BG; 3) СЕ; 4) AC.
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Задача:
Записать уравнение окружности, если точка А(2; 5) принадлежит окружности, а центр окружности имеет координаты О(7; −1).
Уравнение окружности имеет вид:
(x − a)² + (y − b)² = R², где:
(a; b) — координаты центра (смещение от Oxy);
(х; у) — координаты любой точки окружности;
R — радиус окружности.
Отрезок AB — радиус окружности (R)
|AB|² = (y₂ − y₁)² + (x₂ − x₁)²
|AB|² = (−1−5)² + (7−2)²
AB = √(6²+5²) = √(36+25) = √61
т. О(7; −1) ⇒ a = 7, b = −1.
Подставим значения в формулу (x − a)² + (y − b)² = R²:
(x − 7)² + (y + 1)² = 61
Уравнение окружности (x − 7)² + (y + 1)² = 61
Задача:
Проверить, принадлежит ли точка окружности, заданной уравнением x² + (y − 1)² = 25
Подставим значение координат точки и проверим, тождественно ли уравнение:
A(5; −1)
5²+(−1−1)² = 25
25+4 = 25
29 ≠ 25 ⇒ т. A не принадлежит данной окружности
B(−5; 1)
(−5)²+(1−1)² = 25
25+0 = 25
25 = 25 ⇒ т. B принадлежит окружности
C(0; 6)
(0)²+(6−1)² = 25
0+25 = 25
25 = 25 ⇒ т. C принадлежит окружности
K(0; −6)
(0)²+(−6−1)² = 25
0+49 = 25
49 ≠ 25 ⇒ т. K не принадлежит окружности
M(3; 5)
3²+(5−1)² = 25
9+16 = 25
25 = 25 ⇒ т. M принадлежит окружности
Точки B(−5; 1), C(0; 6) и M(3; 5) принадлежат заданной окружности, точки A(5; −1) и K(0; −6) не принадлежат окружности.