1. а) каким плоскостям принадлежат точки k, l, m, n, q? б) каким плоскостям принадлежат прямые kl, qn, d1m? в) в какой точке пересекаются прямая kl и плоскость dd1c1, dc и (bb1c1), qn и (bb1c1), qn и (a1b1c1), md1 и (aa1d1)? г) по какой прямой пересекаются плоскости a1b1c1 и dd1c1, (kln) и (a1b1c1), (kln) и (dd1c1), (kln) и (bb1c1). 2. а) каким плоскостям принадлежат точки m, p, k? б) каким плоскостям принадлежат прямые mn, kf, ad? в) в какой точке пересекаются прямая mnи (aa1b1), mnи (a1b1d1), mn и (abc), mn и (cc1d1)? г) по какой прямой пересекаются плоскости aa1d1 и aa1b1, (mnk) и (cc1d1), (mnk) и (abc)? 3. а) каким плоскостям принадлежат точки a, p, c, m? б) каким плоскостям принадлежат прямые ad, pd, pc? в) в какой точке пересекаются прямая ad и плоскость bdc, ab и (bdc), ab и (pdc), dm и (abc)? г) по какой прямой пересекаются плоскости abc и adc, (abd) и (pdc), (abc) и (pdc)
ответ: Такого треугольника не может быть.
Объяснение: Биссектриса делит угол 130° на 2 равных по 65°.
Высота отсекает от треугольника прямоугольный треугольник с острым углом между высотой и боковой стороной 15°. (65°-50°=15°). Сумма острых углов треугольника 90°. Поэтому второй острый угол этого треугольника будет 90°-15°=75°. Получится, что сумма двух углов треугольника 130°+75°=205°, чего быть не может. А есть ведь ещё и третий угол.
Встречается подобная задача, где угол между высотой и биссектрисой 10°. Тогда решение возможно. Углы при основании получим 35° и 15°. При проверке сумма углов треугольника 130°+35°+15°=180°.
Подробное решение такой задачи дано мной на
1) Из формулы N=180•(n-2)/2, где n - количество сторон (углов) многоугольника, N- сумма внутренних углов.
2) Из суммы внешних углов многоугольника. Она равна 360°⇒
внутренний угол=(180°)-360°:n, так как сумма внешнего и внутреннего углов равна 180°
3). Вокруг правильного многоугольника можно описать окружность, и радиусы, соединяющие центр окружности с вершинами многоугольника делят его на равные треугольники. Сумма двух соседних углов при основании таких треугольников и будет величиной угла многоугольника. Т.е. из суммы углов треугольника нужно вычесть величину центрального угла двадцатиугольника.
(см. вложение)