1. Дан треугольник ARP. ∠ A = 40°, ∠ R = 109°. Определи величину ∠ P.
∠ P =
°.
2. Дан прямоугольный треугольник, величина одного острого угла которого составляет 33°. Определи величину второго острого угла этого треугольника.
Величина второго острого угла равна
°.
ответ: углы равны 60, 60, 120, 120 градусам.
S ABCE=AE*CH.
Выразим площадь прямоугольника S1:
S1 А1В1С1Е1=А1Е1*А1В1
Но А1Е1=АЕ, поэтому можно записать так:
S1 А1В1С1Е1=А1Е1*А1В1=АЕ*А1В1
Зная, что S1 больше S в 2 раза, можно записать:
S1=2S, или
АЕ*А1В1=2*AE*CH, отсюда
А1В1=2СН, СН=1/2А1В1
Помня, что А1В1=СЕ, можно записать для СН так:
СН=1/2А1В1=1/2СЕ
Т.е. в прямоугольном треуг-ке СНЕ на рис.1 катет СН равен половине гипотенузы СЕ. Используем одно из свойств прямоугольных треугольников: если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. Значит
<CEH=30°. Тогда <AEC=180-30=150°