Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
10. г)
12. в)
13. б)
Объяснение:
10. (за теоремою про властивість відрізків дотичних)
AD = BD = 5 см
EC = EA = 2 см
BF = CF = 4 см
Р трикутника = DE + EF + DF
DE = AD+EA = 5 см+2 см = 7 см
EF = EC+CF = 2 см+4 см = 6 см
DF = BD+BF = 5 см+4 см = 9 см
Р трикутника = 7 см+6 см+9 см
Р трикутника = 22 см
12. майже теж саме, що і номер 10
13. (за теоремою про кути рівнобедреного трикутника, властивістю відрізків дотичних та теремою про суму кутів трикутника)
AB = AC
Отже трикутник АВС рівнбедрений. А у рівнобедреного трикутника кути при основі рівні
Тому кут АСВ = куту АВС = 50 градусів
кут АВС+кут АСВ+кут ВАС = 180 градусів
кут ВАС = 180 градусів - (кут АВС+кут АСВ) = 180 градусів - (50 градусів+50 градусів) = 180 градусів - 100 градусів = 80 градусів
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301