Расстояние от точки М до середины стороны квадрата (апофема пирамиды МАВСD) ≈ 11 см
Объяснение:
Дано:
Квадрат АВСD
MA = МВ = МС = MD = 12 см
α = 60°
MАВСD - правильная четырёхугольная пирамида
Найти:
Апофему А пирамиды
Опустим перпендикуляр из точки М на основание АВСD. Он пересечёт основание в точке О. МО - высота пирамиды. ОА - проекция бокового ребра МА пирамиды на основание, поэтому заданный в условии угол α = 60° - угол между боковым ребром МА и его проекцией ОА.
В прямоугольном треугольнике МАО (∠МОА = 90°) найдём катеты ОА и МО
МО = МА · sin α = 12 · sin α = 12 · 0,5√3 = 6√3 (см)
OA = MA · cos α = 12 · cos 60° = 12 · 0.5 = 6 (см)
ОА является половиной диагонали квадрата АВСD.
Сторона квадрата а = 2АО : √2 = 12 : √2 = 6√2 (cм)
Апофему пирамиды найдём, используя теорему Пифагора
Расстояние от точки М до середины стороны квадрата (апофема пирамиды МАВСD) ≈ 11 см
Объяснение:
Дано:
Квадрат АВСD
MA = МВ = МС = MD = 12 см
α = 60°
MАВСD - правильная четырёхугольная пирамида
Найти:
Апофему А пирамиды
Опустим перпендикуляр из точки М на основание АВСD. Он пересечёт основание в точке О. МО - высота пирамиды. ОА - проекция бокового ребра МА пирамиды на основание, поэтому заданный в условии угол α = 60° - угол между боковым ребром МА и его проекцией ОА.
В прямоугольном треугольнике МАО (∠МОА = 90°) найдём катеты ОА и МО
МО = МА · sin α = 12 · sin α = 12 · 0,5√3 = 6√3 (см)
OA = MA · cos α = 12 · cos 60° = 12 · 0.5 = 6 (см)
ОА является половиной диагонали квадрата АВСD.
Сторона квадрата а = 2АО : √2 = 12 : √2 = 6√2 (cм)
Апофему пирамиды найдём, используя теорему Пифагора
А² = МО² + (0,5а)² = (6√3)² + (0,5 · 6√2)² = 108 + 18 = 126 (cм²)
А ≈ 11,22 см
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает