1. Даны две пересекающиеся прямые m и n и точка В, не лежащая в плоскости этих прямых. Докажите, что через точку В проходит плоскость, параллельная прямым m и n, и притом только одна.
2. Две плоскости a и b параллельны плоскости y. Докажите, что плоскости a и b параллельны.
Пусть СК=у, тогда ВК=6-у.
Из прямоугольных треугольников квадрат катета ВР можно найти двумя сразу их объединим:
ВС²-СР²=АВ²-АР²,
6²-х²=5²-(4-х)²,
36-х²=25-16+8х-х²,
х=27/8.
Аналогично из прямоугольных тр-ков АСК и АВК:
АС²-СК²=АВ²-ВК²,
4²-у²=5²-(6-у)²,
16-у²=25-36+12у-у²,
у=27/12.
В тр-ке АВС cosC=(АС²+ВС²-АВ²)/(2АС·ВС)=(16+36-25)/(2·4·6)=27/48.
В тр-ке CPK по теореме косинусов РК²=СР²+СК²-2СР·СК·cosC.
РК²=(27/8)²+(27/12)²-2·27·27·27/(8·12·48)=(729/64)+(729/144)-(27³/48²)=(729/64)+(324/64)-(19683/2304)=(1053/64)-(19683/2304)=2025/256.
РК=45/16=2.8125 - это ответ.
Допустим, что наш параллелограмм это АВСД.
У него АВ=СД, а ВС=АД.
Периметр равен сумме всех сторон, значит
АВ+СД+ВС+АД=256
2АВ+2ВС=256.
По условию задачи АВ/ВС=0,27/0,13, и исходя из этой пропорции
АВ=0,27ВС/0,13.
Подставим это значение АВ в предыдущее уравнение:
2АВ+2ВС=256.
2*0,27ВС/0,13+2ВС=256.
0,54ВС/0,13+2ВС=256
ВС*54/13+2*13ВС/13=256
54ВС/13+26ВС/13=256
80ВС/13=256
ВС*80/13=256
ВС=256 / 80/13
ВС=256 * 13/80
ВС=41,6 см
Значит ВС=АД=41,6 см
Теперь найдем размеры других сторон параллелограмма:
АВ=0,27ВС/0,13 = 0,27*41,6/0,13=86,4 см
Значит АВ=СД=86,4 см
ответ: ВС=АД=41,6 см, АВ=СД=86,4 см.
Во втором случае, когда стороны односятся как 3:5, выходит следующее:
Параллелограмм — четырехугольник, у которого противоположные стороны равны.
Допустим, что наш параллелограмм это АВСД.
У него АВ=СД, а ВС=АД.
Периметр равен сумме всех сторон, значит
АВ+СД+ВС+АД=256
2АВ+2ВС=256.
По условию задачи АВ/ВС=3/5, и исходя из этой пропорции
АВ=3ВС/5=0,6ВС.
Подставим это значение АВ в предыдущее уравнение:
2АВ+2ВС=256.
2*0,6ВС+2ВС=256.
1,2ВС+2ВС=256
3,2ВС=256
ВС=256/3,2
ВС=80 см
Значит ВС=АД=80 см
Теперь найдем размеры других сторон параллелограмма:
АВ=0,6ВС = 0,6*80=48 см
Значит АВ=СД=48 см
ответ: ВС=АД=80 см, АВ=СД=48 см