1.Даны линейная функция y = 4x + 5. Задайте формулой линейную функцию, график которой: а) параллелен графику данной функции; б) пересекает график данной функции; в) параллелен графику данной функции и проходит через начало координат
Обозначим хорду АВ, вершины квадрата, лежащие на окружности, СD, соединим эти точки последовательно. DC||АВ, АВСD- трапеция. Вписать в окружность можно только равнобедренную трапецию. Опустим из С высоту СН и проведем диагональ АС. Высота равнобедренной трапеции, опущенная из вершины тупого угла на большее основание. делит его на два отрезка, из которых меньший равен полуразности, больший – полусумме оснований. ВН=2, АН=4 Треугольник АСВ вписан в тот же сегмент, что и квадрат, его высота СН – сторона квадрата и равна 2 см. Радиус описанной около треугольника окружности находят по формуле R=a•b•c:4S, т.е. он равен произведению сторон треугольника, деленному на его учетверенную площадь По т.Пифагора АС=√(AH²+CH²)=√(16+4)=2√5 По т.Пифагора ВС=√(CH²+BH²)=√8=2√2 S (АВС)=СН•AB:2=2•6:2=6 (см²) a•b•c=6•2√5•2√2=24√10 4S=24 R=24√10:24=√10 (см) Или, используя найденные выше значения АС и ВС:
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
Высота равнобедренной трапеции, опущенная из вершины тупого угла на большее основание. делит его на два отрезка, из которых меньший равен полуразности, больший – полусумме оснований.
ВН=2, АН=4
Треугольник АСВ вписан в тот же сегмент, что и квадрат, его высота СН – сторона квадрата и равна 2 см.
Радиус описанной около треугольника окружности находят по формуле R=a•b•c:4S, т.е. он равен произведению сторон треугольника, деленному на его учетверенную площадь
По т.Пифагора АС=√(AH²+CH²)=√(16+4)=2√5
По т.Пифагора ВС=√(CH²+BH²)=√8=2√2
S (АВС)=СН•AB:2=2•6:2=6 (см²)
a•b•c=6•2√5•2√2=24√10
4S=24
R=24√10:24=√10 (см)
Или,
используя найденные выше значения АС и ВС:
По т.синусов
см
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.