1)докажите, что если высота, опущенная из тупого угла ромба, делит его сторону пополам, то острый угол ромба равен 60 градусам 2)дан квадрат abcd и точки m, l, p, q на его сторонах ab, dc, cd, da соответственно. известно, что am=bl=cp=dq. докажите что mlpq-квадрат
<CBH=30°
Зная, что сумма острых углов прямоугольного треугольника равна 90°, находим угол С:
<C=90-<CBH=90-30=60°, что и требовалось доказать.
2. ВМ=АВ-AM, CL=BC-BL, DP=CD-CP, AQ=AD-DQ, но
АМ=BL=СР=DQ по условию, а АВ=BC=CD=AD как стороны квадрата. Значит
ВМ=CL=DP=AQ
Прямоугольные треугольники MAQ, LBM, PCL и QDP равны, таким образом, по двум сторонам и углу между ними (углы А, B, C, D - прямые, АМ=BL=СР=DQ по условию, ВМ=CL=DP=AQ как только что доказано). У равных треугольников равны и соответственные стороны MQ, LM, LP и PQ. Значит, MLPQ-квадрат.