1. Докажите равенство треугольников ABC и CBD(рис.44), если AB=BC и <ABD=<CBD. 2. Найдите стороны равнобедренного треугольника, если его периметр равен 30 см а боковая сторона на 6 см меньше основания 3. На основании AC равнобедренного треугольника АВС отметили точки М и К так что <ABM = <CBK, точка M лежит между точками А и к Докажите, что AM = CK 4. известно, что AB = AD и BC = DC (рис. 45). Докажите, что во = 10. 5. Медиана ВМ треугольника ABC перпендикулярна его биссектрисе AD. Найдите сторону AC, если AB = 7 см.
1 признак : два прямоугольных треугольника равны, если два катета одного треугольника равны двум катетам другого треугольника. Коротко этот признак называют равенством по двум катетам.
2 признак:два прямоугольных треугольника равны, если катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого треугольника.
3 признак:Два прямоугольных треугольника равны, если равны катет и противолежащий острый угол одного треугольника катету и противолежащему углу другого треугольника
4 признак: Если гипотенуза и острый угол одного прямоугольного треугольника равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
5 признак: Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие треугольники равны.
1 неверно
Объяснение:
1 признак : два прямоугольных треугольника равны, если два катета одного треугольника равны двум катетам другого треугольника. Коротко этот признак называют равенством по двум катетам.
2 признак:два прямоугольных треугольника равны, если катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого треугольника.
3 признак:Два прямоугольных треугольника равны, если равны катет и противолежащий острый угол одного треугольника катету и противолежащему углу другого треугольника
4 признак: Если гипотенуза и острый угол одного прямоугольного треугольника равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
5 признак: Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие треугольники равны.
ОД = Н/tg 60° = 10√3 / √3 = 10.
ОД (по свойству медиан) = (1/3) СД =(1/3)*а*cos 30° = (1/3)*a *(√3/2) = a√3/6. Отсюда а (сторона основания пирамиды) равно: а = 6*ОД/√3 = 6*10/√3 = 60/√3 = 20√3.
Периметр основания Р = 3а = 3*20√3 = 60√3.
Апофема SД = Н/sin 60° = 10√3/(√3/2) = 20 = А.
Площадь боковой поверхности:
Sбок = (1/2)Р*А = (1/2)*60√3*20 = 600√3.
Площадь основания:
Sо = а²√3/4 = (20√3)²*√3/4 = 300√3.
Площадь полной поверхности:
S = Sо + Sбок = 300√3 + 600√3 = 900√3.
Объём пирамиды V = (1/3)Sо*H = (1/3)*(300√3)*(10√3) =
= 3000.