Рассмотрим треугольники ABD и ACD. Проведем высоты ВН и СК. Sabd = AD·BH/2 Sacd = AD·CK/2 Так как площади этих треугольников равны, то равны и их высоты: AD·BH/2 = AD·CK/2 ⇒ ВН = СК. Но ВН ║ СК как перпендикуляры к одной прямой. Тогда НВСК - прямоугольник и, значит, НК ║ ВС, а значит, AD ║ BC.
Рассмотрим треугольники ACD и BCD. Проведем высоты АЕ и ВТ к стороне CD. Sacd = CD·AE/2 Sbcd = CD·BT/2 Так как площади этих треугольников равны, то равны и их высоты: CD·AE/2 = CD·BT/2 ⇒ AE = BT. Но АЕ ║ ВТ как перпендикуляры к одной прямой. Тогда ЕАВТ - прямоугольник и, значит, ЕТ ║ АВ, а значит, СD ║ АВ.
AD ║ BC, СD ║ АВ, значит ABCD - параллелограмм по определению.
Построим диагональное сечение усеченной пирамиды. В верхнем основании по теореме Пифагора диагональ равна 12*кореньиздвух, в нижнем по теореме Пифагора лиагональ равна 18*кореньиздвух. Тогда для нахождения длины бокового ребра надо найти боковой стороны равнобедренной трапеции с основаниями 12*кореньиздвух и 18*кореньиздвух, высотой кореньизтринадцати. Если опустить высоты на большее основание из концов меньшего основания, то получим прямоугольник и два равных прямоугольных треугольника. Рассмотрим один из этих прямоугольных треугольников. В нем один катет это высота трапеции кореньизтринадцати, а другой катет равен 3*кореньиздвух. Найдем гипотенузу - она же боковая сторона трапеции - по теореме Пифагора. Получим, корень из (13+18)=корень из 31. Это и есть длина бокового ребра усеченной пирамиды.
Sabd = AD·BH/2
Sacd = AD·CK/2
Так как площади этих треугольников равны, то равны и их высоты:
AD·BH/2 = AD·CK/2 ⇒ ВН = СК.
Но ВН ║ СК как перпендикуляры к одной прямой. Тогда НВСК - прямоугольник и, значит, НК ║ ВС, а
значит, AD ║ BC.
Рассмотрим треугольники ACD и BCD.
Проведем высоты АЕ и ВТ к стороне CD.
Sacd = CD·AE/2
Sbcd = CD·BT/2
Так как площади этих треугольников равны, то равны и их высоты:
CD·AE/2 = CD·BT/2 ⇒ AE = BT.
Но АЕ ║ ВТ как перпендикуляры к одной прямой. Тогда ЕАВТ - прямоугольник и, значит, ЕТ ║ АВ, а
значит, СD ║ АВ.
AD ║ BC, СD ║ АВ, значит ABCD - параллелограмм по определению.