Серединный перпендикуляр,проведённый К диагонали прямоугольника,делит его сторону на части,одна из которых равна меньшей стороне прямоугольника.Найдите угол между диагоналями прямоугольника.
Объяснение:
О-точка пересечения диагоналей АС и ВD. Углом между диагоналями будет∠ВОА .
АО=ОС по свойству диагоналей прямоугольника .Пусть МО -серединный перпендикуляр к диагонали BD .
По условию ВМ=ВА ⇒ΔАМВ-прямоугольный равнобедренный ⇒∠ВМА=∠ВАМ=90°:2=45°.
∠ВМА=45° внешний для ΔМСА . Тогда ∠МАС+∠МСА=45° , по т. о внешнем угле треугольника.
Т. к. каждая точка серединного перпендикуляра равноудалена от концов отрезка, то МС=МА ⇒∠МСА=∠МАС=45:20=22,5°.
а) Диагонали трапеции, пересекают среднюю линию, делят её на три равные части. Примем их по 1.
Левая и правая части средней линии равны половине верхнего основания., Оно равно 2.
2 правые или левые 2 части равны половине нижнего основания. Оно равно 4.
ответ: отношение равно 2:4 или 1:2.
б) Отрезок MN параллелен основаниям трапеции ABCD (рис.), BC = 3, AD = 13, MN = 9. Найдите в каком отношении прямая MN делит боковые стороны.
Из точки С проведём отрезок параллельно АВ. получим 2 подобных треугольника с основаниями 9 - 3 = 6 и 13 - 3 = 10.
Боковые стороны в этом же соотношении: 6:10 = 3:5.
ответ: длины боковых сторон трапеции относятся 3:(5 - 3) = 3:2.
в) Найдите высоту равнобокой трапеции, диагональ которой равна d, а средняя линия равна m.
Проекция диагонали на основание равна ((а - b)/2) + b = ((a + b)/2) = m.
ответ: h = √(d² - m²).
Серединный перпендикуляр,проведённый К диагонали прямоугольника,делит его сторону на части,одна из которых равна меньшей стороне прямоугольника.Найдите угол между диагоналями прямоугольника.
Объяснение:
О-точка пересечения диагоналей АС и ВD. Углом между диагоналями будет∠ВОА .
АО=ОС по свойству диагоналей прямоугольника .Пусть МО -серединный перпендикуляр к диагонали BD .
По условию ВМ=ВА ⇒ΔАМВ-прямоугольный равнобедренный ⇒∠ВМА=∠ВАМ=90°:2=45°.
∠ВМА=45° внешний для ΔМСА . Тогда ∠МАС+∠МСА=45° , по т. о внешнем угле треугольника.
Т. к. каждая точка серединного перпендикуляра равноудалена от концов отрезка, то МС=МА ⇒∠МСА=∠МАС=45:20=22,5°.
ΔВОА равнобедренный, ∠ОВА=∠ОАВ=45°+22,5°=67,5°,
∠ВОА=180-2*67,5°=180°-135°=45°