1) Концы двух отрезков, длина которых 17 см и 25 см, принадлежать двум параллельно плоскости, а проекции этих отрезков на одну из плоскости относятся как 2: 5. Найдите расстояние между плоскостями. 2) Даны равнобедренный треугольник ABC с основанием AC. Через вершину B проведено перпендикуляр SB плоскости треугольника. Докажите, что SN перпендикулярно AC, где N- середина AC, и Найдите расстояние от точки S до прямой AC, если SB = 15 см, AC = 12 см, AB = ВС = 10 см.
Номер 4
<АВС=180-114=66 градусов
<А=180-(66+38)=180-104=76 градусов
Номер 5
<38=<А=38 градусов,как вертикальные
<В=<С=(180-38):2=142:2=71 градус
Номер 10
<68=<А=68 градусов,как вертикальные
<В=180-(42+68)=70 градус
Внешний угол В
180-70=110 градусов
Номер 11
<?=50 градусов,как вертикальный
<С=40,как вертикальный
<А=180-(40+50)=90 градусов
Номер 16
В задании какая-то ошибка,наверное в соотношении углов 3:5:9
Номер 17
На чертеже вертикальные углы,они равны внутренним углам треугольника,а Сумма внутренних углов треугольника равна 180 градусов,поэтому
<1+<2+<3=180 градусов
Номер 22
<С=180-115=65 градусов
<А+<В=115 градусов
<В=(115-25):2=45 градусов
<А=45+25=70 градусов
Номер 23
<В=3Х
<А=Х
3Х-Х=40
2Х=40
Х=40:2=20 градусов
<В=20•3=60 градусов
<А=20 градусов
<1=180-20=160 градусов
<2=180-60=120 градусов
Номер 28
<ВDC+<ADB=180 градусов,как смежные
<АDB=180-120=60 градусов
<АВD=180-(60+90)=30 градусов
<В=30•2=60 градусов
<С=90-60=30 градусов
Номер 29
<2=<1-<3=84 градуса
<2=4Х
<3=Х
<3=84:4=21 градус
<?=180-(21+84)=180-105=75 градусов
<1=180-75=105 градусов
Объяснение:
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².