1. На одній стороні нерозгорнутого кута о відкладено відрізки OA = 9 см та OB = 2 см, а на іншій стороні відрізки OC = 6 см та OD = 18 см. Визнач, чи є подібними, трикут- ники ОАС та OBD, ОВС та ODA.
Диагонали трапеции «высекают» в ней подобные треугольники. ∆ВОС~∆ АОД по равным углам: углы при основаниях равны как накрестлежащие; при точке О - как вертикальные. k=АО:ОС=3. Отношение площадей подобных фигур равно квадрату коэффициента их подобия. ⇒ Ѕ(АОД):Ѕ(ВОС)=3²=9 ⇒ Ѕ(АОД)=36•9=324.
Высота в ∆ АВО и ВОС общая. Отношение площадей треугольников с равными высотами равно отношению сторон, к которым высоты проведены. Ѕ(АВО)=3Ѕ(ВСО)=36•3)=108 Аналогично Ѕ(СОД)=3Ѕ(ВОС)=108. (попутно заметим, что площади треугольников, образованных частями диагоналей и боковыми сторонами трапеции всегда равны именно по этому свойству). Площадь трапеции АВСД равна сумме площадей четырех треугольников. S(АВСД)=36+324+2•108=576 ( ед. площади)
Диагонали трапеции «высекают» в ней подобные треугольники. ∆ВОС~∆ АОД по равным углам: углы при основаниях равны как накрестлежащие; при точке О - как вертикальные. k=АО:ОС=3. Отношение площадей подобных фигур равно квадрату коэффициента их подобия. ⇒ Ѕ(АОД):Ѕ(ВОС)=3²=9 ⇒ Ѕ(АОД)=36•9=324.
Высота в ∆ АВО и ВОС общая. Отношение площадей треугольников с равными высотами равно отношению сторон, к которым высоты проведены. Ѕ(АВО)=3Ѕ(ВСО)=36•3)=108 Аналогично Ѕ(СОД)=3Ѕ(ВОС)=108. (попутно заметим, что площади треугольников, образованных частями диагоналей и боковыми сторонами трапеции всегда равны именно по этому свойству). Площадь трапеции АВСД равна сумме площадей четырех треугольников. S(АВСД)=36+324+2•108=576 ( ед. площади)
Р=3R*sqrt(3)
Откуда
R=P/3*sqrt(3)=45/3*sqrt(3)=15*sqrt(3)
Радиус окружности описанной около восьмиугольника определяется по формуле
R=a/2sin(360/16)=a/2sin(22,5°)
Откуда
a=R*2sin(22,5°)=2*15*sqrt(3)*sin(22,5°)=30*1,7*0,38=19,38
2. Площадь квадрата равна
S=a^2
Определим радиус окружности
R^2=a^2+a^2=2a^2
Площадь круга равна
Sк=pi*R^2=2*pi*a^2=144*pi
3. L=pi*r*a/180, где a – градусная мера дуги, r- радиус окружности
L=pi*3*150/180=2,5*pi
4. Сторона квадрата равна p/4=48/4=12
Диагональ квадрата равна
d^2=a^2+a^2=144+144=288
d=12*sqrt(2)
Радиус квадрата вписанного в окружность равна
R=d/2=6*sqrt(2)
Сторона правильного пятиугольника L, вписанная в эту окружность равна
L=2R*sin(36°)=12*sqrt(2)*sin(36°)=12*1,4*0,588=9,88
5. Площадь кольца находим по формуле:
S=pi* (R^2−r^)
S=pi*(7^2-3^2)=pi*(49-9)=40*pi
6. Треугольник равносторонний, так как угол равен 60°, радиус окружности равен 4
Найдем площадь треугольника по формуле
Sт=R^2*sqrt(3)/4
Sт=16*sqrt(3)/4=4*sqrt(3)
Найдем площадь сектора по формуле
Sc=pi*R^2*(60/360)=pi*16/6==8*pi/3
Найдем площадь сегмента
Sсм=Sс-Sт=8*pi/3-4*sqrt(3)=1,449
вроде как то так