1.На прямій позначені точки А,В і С так, що АВ=17,АС=11,ВС=6. Яка з цих точок розташована між двома іншими? Чи зміниться відповідь, якщо АВ = 17, АС = 11, ВС = 28? 2.Відомо, що АВ = 7. Знайдіть на прямій АВ таку точку М, що АМ - ВМ = 1.
3.Розгорнутий кут розділений на чотири кути, один з яких менший від інших у 2,3 і
4 рази відповідно. Знайдіть величини цих кутів.
AB/BC =(свойство биссектрисы) = AM/MC = (из за MK II AB) = BK/KC;
Пусть точки касания вписанной окружности делят стороны треугольника на отрезки x y z, так, что
x + y = AB; (надо найти)
x + z = AC = 17;
y + z = BC = 12;
Из первой цепочки равенств следует, что
(x + y)/(y + z) = y/z; или xz = y^2; если подставить x = 17 - z; y = 12 - z; получится квадратное уравнение (12 - z)^2 = (17 - z)z; или
2z^2 - 41z + 144 = 0; откуда z1 = 16; z2 = 9/2;
Ясно, что z < 12; поэтому остается корень z = 9/2;
x + y + 2z = 17 + 12 = 29; откуда x + y = 20;
AB =20;
Т.к. Δ - равносторонний, а диаметр основания = основанию Δ=6, то и боковые стороны (которые, кстати, являются образующими конуса)=6.
Найдем высоту конуса, которая равна высоте рассматриваемого Δ. По т. Пифагора=√6²-3²=√36-9=√27=3√3
Итак, мы нашли высоту h=3√3, нам известен радиус r = 1/2диаметра = 3 и образующая конуса l=6. Подставляем все это в формулы:
V=1/3 π*h*r²=1/3*π*3√3*3²=9π√3 см³
S=πr(r+l)=π*3*(3+6)=27π см²