ВС║α, плоскость трапеции проходит через ВС и пересекает α по прямой EF, значит EF║BC.
CF : FD = BE : EA = 2 : 3 по теореме Фалеса
Проведем диагональ BD, О - точка пересечения диагонали и EF. ΔЕВО подобен ΔABD по двум углам (угол В общий, ∠ВЕО = ∠ВАD как соответственные при пересечении параллельных прямых EF и AD секущей АВ), ЕО : AD= BE : BA = 2 : 5 EO = AD · 2 / 5 = 7 · 2 / 5 = 14/5 = 2,8 см
ΔDOF подобен ΔDBC по двум углам (угол D общий, ∠DOF = ∠DBC как соответственные при пересечении параллельных прямых EF и ВС секущей BD) OF : BC = DF : DC = 3 : 5 OF = BC · 3 / 5 = 4 · 3 / 5 = 12/5 = 2,4 см EF = EO + OF = 2,8 + 2,4 = 5,2 см
Треугольник АВС, АВ=ВС, О-центр окружности, ВО=20, проводим перпендикуляр из точки О на АС=медиане=биссектрисе=радиусу, длина окружности=2*пи*радиус, 24пи=2*пи*радиус, радиус=12, проводим АО и СО - биссектрисы углов А и С соответственно, центр вписанной окружности лежит на пересечении биссектрис, , т.к ВО тоже биссектриса, АО=ВО=СО=20, треугольникАОС равнобедренный, АН=СН=корень(АО в квадрате-ОН в квадрате)=корень(400-144)=16, АС=2*АН=2*16=32, треугольник АВН, ВН=ВО+ОН=20+12=32, АВ=ВС=корень(АН в квадрате+ВН в квадрате)=корень(256+1024)=16*корень5, периметр=16*корень5+16*корень5+32=32*корень5+32
CF : FD = BE : EA = 2 : 3 по теореме Фалеса
Проведем диагональ BD, О - точка пересечения диагонали и EF.
ΔЕВО подобен ΔABD по двум углам (угол В общий, ∠ВЕО = ∠ВАD как соответственные при пересечении параллельных прямых EF и AD секущей АВ),
ЕО : AD= BE : BA = 2 : 5
EO = AD · 2 / 5 = 7 · 2 / 5 = 14/5 = 2,8 см
ΔDOF подобен ΔDBC по двум углам (угол D общий, ∠DOF = ∠DBC как соответственные при пересечении параллельных прямых EF и ВС секущей BD)
OF : BC = DF : DC = 3 : 5
OF = BC · 3 / 5 = 4 · 3 / 5 = 12/5 = 2,4 см
EF = EO + OF = 2,8 + 2,4 = 5,2 см