1) Накресліть довільний відрізок а й побудуйте рівносторонній трикутник зі
стороною а.
2) Накресліть довільний тупокутний трикутник. Побудуйте трикутник, рівний
накресленому.
3) Побудуйте рівнобедрений трикутник, у якого основа дорівнює а, а бічна сторона –
відрізок b.
Дано:
ABC - равнобедренный треугольник
AC - Основание треугольника = AB - 3 или BC - 3
P = 15.6 см - Периметр треугольника
Так как треугольник равнобедренный, его боковые стороны равны.
AB = BC
Пусть x - любая боковая сторона треугольника
Так как нам известно, что основание треугольника на 3 раза меньше, мы можем написать уравнение.
P = x + x +(x-3) - Периметр - Сумма длин всех сторон(Боковая сторона+ Боковая сторона + Основание)
15.6=x+x+(x-3)
15.6=3x-3
18.6 = 3x
x = 6.2 - Боковая сторона
Основание = 6.2 - 3 = 3.2
Проверка:
3.2+6.2 +6.2 = 15.6 см
ответ: 6.2, 6.2, 3.2 см
Проведём высоту в пирамиде. Проведём перпендикуляры из основания высоты к 4 сторонам, если соединить вершину с точками пересечения, то получаться так же перпендикуляры (по теореме о 3 перпендикулярах), получаются 4 прямоугольных треугольника у которых общий катет и один равный угол (по условию, а так же двугранный угол это линейный угол между 2 перпендикулярами принадлежащих разным плоскостям), то есть эти треугольники равны. Значит в 4 боковых треугольника равны высоты (это гипотенуза от тех прямоугольных треугольников). Так же заметим, что из основания высоты пирамиды проведены 4 перпендикуляры, которые как оказалось равны, то есть это радиусы вписанной окружности в ромбе. Если посмотреть на диаметр этой окружности, то можно заметить, что он перпендикулярен к стороне ромба, то есть радиус это половина высоты от ромба. Высоту в ромбе можно найти перемножив синус угла между смежными сторонами и саму сторону. Далее можно найти радиус ( :2 ). Площадь основания (ромба) можно найти умножим высоту ромба на его сторону. Теперь отвлечёмся от основания и снова посмотрим внутрь пирамиды, там были 4 прямоугольных треугольника, мы теперь знаем его катет, тот что снизу (это радиус вписанной), а так же по условию мы знаем прилежащий к этой стороне острый угол, то есть мы можем найти гипотенузы (поделив катет на косинус угла), как уже было сказано это гипотенуза есть высота в 4 боковых треугольниках пирамиды. У них основание все равны т.к. ромб и высоты тоже все равны, то есть площади все одинаковы. А площадь одного бокового треугольника стоит найти перемножим высоты на сторону и поделив пополам, но у нас же 4 одинаковый площади, так что сразу домножаем на 4 (можно не делить пополам, а сразу умножить на 2). Далее мы складываем площадь основания и боковых ребер. Приведу пример для вычисления площади по моим рассуждениям.
ответ: 54дм