№1 .найдите острый угол х,если:1) sin x=0,3481 ;2) cos x =0,7812;3) tg x =8,3554. №2.известно что :1) cos 15/17 найдите sin, tg. 2) sin 40/41. найдите cos,tg.
В правильной треугольной пирамиде плоский угол при вершине равен 60 градусов,длина бокового ребра равна 4 см. Найдите объём пирамиды.
В правильной треугольной пирамиде основанием служит правильный треугольник. Грани пирамиды - равнобедренные треугольники, т.к. боковые ребра равны. По условию плоский угол при вершине равен 60°. Следовательно, углы при основании боковых граней также равны 60°, и эти грани - равносторонние треугольники. Стороны основания равны боковым ребрам и равны 4 см Объем пирамиды равен одной трети произведения площади её основания на высоту. Так как все ребра пирамиды равны, их проекции на основание также равны, и поэтому основание высоты КО пирамиды находится в точке О пересечения высот основания АВС пирамиды. Высоту КО найдем из прямоугольного треугольника АКО, где катеты КО и АО и гипотенуза АК. Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины. АО -2/3 высоты АН ( которая в равностороннем треугольнике является и медианой) АН=АВ*sin(60°)=2√3 см АО=2*(2√3):3=(4√3):3 см КО=√(АК²-АО²)=√(16-48/9)=√(96/9)=(4√6):3 см V=Sh:3 S= (a²√3):4=16√3):4=4√3 см² V=(4√3)*(4√6):3):3=(16√2):3 см³
Дано: ABCD - трапеция EF - средняя линия EO = 3 см OF = 4 см Найти: AB Решение. 1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам. 2) Рассмотрим треугольники EOD и ABD. Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD. Угол DBC общий. Следовательно, треугольник BOF подобен BDC. 3) Из подобия треугольников следует, что AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
В правильной треугольной пирамиде основанием служит правильный треугольник.
Грани пирамиды - равнобедренные треугольники, т.к. боковые ребра равны.
По условию плоский угол при вершине равен 60°.
Следовательно, углы при основании боковых граней также равны 60°,
и эти грани - равносторонние треугольники.
Стороны основания равны боковым ребрам и равны 4 см
Объем пирамиды равен одной трети произведения площади её основания на высоту.
Так как все ребра пирамиды равны, их проекции на основание также равны, и поэтому основание высоты КО пирамиды находится в точке О пересечения высот основания АВС пирамиды.
Высоту КО найдем из прямоугольного треугольника АКО, где катеты КО и АО и гипотенуза АК.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
АО -2/3 высоты АН ( которая в равностороннем треугольнике является и медианой)
АН=АВ*sin(60°)=2√3 см
АО=2*(2√3):3=(4√3):3 см
КО=√(АК²-АО²)=√(16-48/9)=√(96/9)=(4√6):3 см
V=Sh:3
S= (a²√3):4=16√3):4=4√3 см²
V=(4√3)*(4√6):3):3=(16√2):3 см³
EF - средняя линия
EO = 3 см
OF = 4 см
Найти: AB
Решение.
1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам.
2) Рассмотрим треугольники EOD и ABD.
Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD.
Угол DBC общий. Следовательно, треугольник BOF подобен BDC.
3) Из подобия треугольников следует, что
AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.