1.Найдите радиус основания и высоту цилиндра, описанного около прямоугольного параллелепипеда, ребра которого, выходящие из одной вершины равны 1 см, 2 см, 3 см. Сколько таких цилиндров?
2.Найдите радиус основання и высоту цилиндра, описанного около правильной треугольной призмы, ребра которой равны 1 см. Сделайте рисунок.
3.Найдите радиус основания и высоту цилиндра, вписанного в правильную треугольную призму, ребра которой равны 1 см. Сделайте рисунок.
Вычислить площадь основания по формуле Герона
p=½ (a+b+c)=½ 24=12p=½ (a+b+c)=½ 24=12
12*(12-8)(12-6)(12-10)=12*6*4*2=576
S=√576=24см²
Затем надо вычислить площадь боковой поверхности.
Периметр основания равен 24.
При этом принять во внимание, что:
Если боковые грани наклонены к плоскости основания под одним углом, то:
а) в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
б) высоты боковых граней равны;
в) площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани. Высоту найти любой стороны, поскольку они равны. Затем уже площадь боковых граней и сложить с площадью основания.
Если биссектриса острого угла трапеции является его диагональю, то меньшее основание трапеции равно её боковой стороне.
Имеем АВ = ВС =СД = а.
Опустим перпендикуляр СЕ из точки С на АД.
При этом получили 2 подобных треугольника: АСЕ и ЕСД.
Угол САЕ равен углу ДСЕ как взаимно перпендикулярные.
Угол А равен углу Д (как углы при основании равнобедренной трапеции).
Поэтому угол ДСЕ равен половине угла Д.
Имеем: 90° =(1/2)Д+Д = (3/2)Д,
Отсюда угол Д = 90*2/3 = 180/3 = 60°.
Тогда ЕД = а/2, а основание АД = а+2(а/2) = 2а.
Высота СЕ = а*sin 60° = a√3/2.
Площадь S трапеции равна:
S = ((a+2a)/2)*(a√3/2) = (3a/2)*(a√3/2) = 3√3a²/4.
То есть данная трапеция равна площади трёх равносторонних треугольников со стороной а.