1) найдите уравнения окружности, являющиеся образом окружности (x + 4)^2 + (y -5)^2=49 при параллельном переносе на вектор а(-2; 6) 2) найдите косинус угла между векторами а и b, если векторы m=a+2b и n=6a-b перпендикулярны, i a i=1 , i b i=2
Диагонали квадрата равны, взаимно перпендикулярны и точкой пересечения делятся пополам. Значит перпендикуляр, опущенный из вершины на диагональ квадрата - это половина его второй диагонали.
Построение:
1. Проведем прямую а и отметим на ней точку О. Построим окружность с центром в точке О и радиусом, равным данному отрезку b. Точки пересечения окружности с прямой а обозначим А и С.
2. Построим перпендикуляр к прямой а, проходящий через точку О. Для этого проведем две окружности с центрами в точках А и С одинакового произвольного радиуса (больше половины отрезка АС). Через точки пересечения окружностей проведем прямую k. k⊥AC.
3. Построим окружность с центром в точке О и радиусом, равным данному отрезку b. Точки пересечения этой окружности с прямой k обозначим В и D.
Сделаем рисунок. Отметим на СD точку К. Соединим В с К и D. Получены 4 треугольника: АЕD, ВЕD, ВDК и ВКС. Площадь треугольника равна половине произведения высоты на длину стороны, к которой проведена. Нет необходимости доказывать, что основания во всех этих треугольниках равны половине равных сторон параллелограмма. Высоты в них также равны высоте DН параллелограмма. Следовательно, эти треугольники равновелики ( т.е. равны по площади). Площадь трапеции ВСDЕ равна площади трех частей, т.е. 3/4, площади параллелограмма АВСD. S (BCDE) =184:4*3=46*3=138 ——— Вариант решения. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена. Обозначим боковые стороны параллелограмма равными а. Тогда S ( ABCD)=h*a Площадь трапеции равна половине произведения высоты на сумму оснований: S (BCDE)=h*(a:2 +a):2 S (BCDE)=h*(3a:2):2=h*a*3/4 S (BCDE)=184:4*3=138
Диагонали квадрата равны, взаимно перпендикулярны и точкой пересечения делятся пополам. Значит перпендикуляр, опущенный из вершины на диагональ квадрата - это половина его второй диагонали.
Построение:
1. Проведем прямую а и отметим на ней точку О. Построим окружность с центром в точке О и радиусом, равным данному отрезку b. Точки пересечения окружности с прямой а обозначим А и С.
2. Построим перпендикуляр к прямой а, проходящий через точку О. Для этого проведем две окружности с центрами в точках А и С одинакового произвольного радиуса (больше половины отрезка АС). Через точки пересечения окружностей проведем прямую k. k⊥AC.
3. Построим окружность с центром в точке О и радиусом, равным данному отрезку b. Точки пересечения этой окружности с прямой k обозначим В и D.
Квадрат ABCD построен.
Отметим на СD точку К.
Соединим В с К и D.
Получены 4 треугольника: АЕD, ВЕD, ВDК и ВКС.
Площадь треугольника равна половине произведения высоты на длину стороны, к которой проведена.
Нет необходимости доказывать, что основания во всех этих треугольниках равны половине равных сторон параллелограмма.
Высоты в них также равны высоте DН параллелограмма.
Следовательно, эти треугольники равновелики ( т.е. равны по площади). Площадь трапеции ВСDЕ равна площади трех частей, т.е. 3/4, площади параллелограмма АВСD.
S (BCDE) =184:4*3=46*3=138
———
Вариант решения.
Площадь параллелограмма равна произведению высоты на сторону, к которой проведена.
Обозначим боковые стороны параллелограмма равными а.
Тогда S ( ABCD)=h*a
Площадь трапеции равна половине произведения высоты на сумму оснований:
S (BCDE)=h*(a:2 +a):2
S (BCDE)=h*(3a:2):2=h*a*3/4
S (BCDE)=184:4*3=138