1.обоснуйте равенство отрезков соединяющих середины противоположных сторон ромба 2.постройте параллелограмм по двум смежным сторонам если высота проведенная из вершины тупого угла делит противоположную сторону пополам
3.постройте треугольник периметр которого составляет половину периметр данного треугольника
1. Сумма противоположных углов четырехугольника равна не 108, а 180.
Вписанный угол равен половине дуги, на которую он опирается. А противоположные углы четырехугольника опираются на дуги, сумма градусных мер которых равна 360 градусов. А половина этого равна 180!
2. Мы доказали толко что, что сумма противоположных углов прямоугольника, вписанного в окружность, равна 180 градусов. Д+В=180, но Д=3х, а В=2х, значит, х=36 градусов. Угол А равен х = 36, отсюда, угол С=180-36 = 144 градуса.
3. А+С=90. , нро треугольники АВД и ВСД - прямоугольные и углы у них ВДС = А, а угол АВС = С. Составляем пропорцию для угла А. ВД:18=2:ВД отсюда ВД^2=36 ВД = 6. Высота трапеции равна 6. Площадь её равна 1/2 (2+18) * 6 = 60
Центр данной окружности лежит на биссектрисе угла СВЕ.
Так как этот угол смежный с углом АВС,
он равен 60°, а угол ОВЕ=30°.
По свойству отрезков касательных из точки вне окружности отрезки от В до точек касания равны, равны и отрезки от С до точек касания. Сумма их с соответствующими сторонами треугольника является его полупериметром.
Тогда длина стороны АВ на 3√3 меньше полупериметра треугольника, а АЕ - равна полупериметру, то
ВЕ=3√3
Радиус ОЕ:ВЕ= tg (30°) = 1/√3
Радиус ОЕ:ВЕ=R:3√3
R:3√3 = 1/√3
R=3√3 ·1/√3=3