Прямая может либо лежать в плоскости, либо быть параллельной плоскости, либо пересекать плоскость.
Докажем от противного: пусть прямая m не параллельна пл-сти b тогда прямая m либо лежит в плоскости b либо пересекает ее. из условия сказано, что прямая a лежит в плоскости a, тогда остается 1 случай : прямая m пересекает плоскость b. поскольку прямая m лежит в пл-сти а и при этом пересекает пл-сть b - это возможно только в том случае, если пл-сти a и b -пересекают, но по условию -они параллельны. Мы пришли к противоречию. Отсюда следуем, что прямая m параллельна пл-сти b
At the beginning of the day, Margaret had 72 ice cream cones. By noon, she had $\frac{2}{3}$ as many cones as she had at the beginning of the day. By the end of the day, she only had $\frac{2}{3}$ as many cones as she had at noon. How many ice cream cones does she have at the end of the day?
Объяснение:
At the beginning of the day, Margaret had 72 ice cream cones. By noon, she had $\frac{2}{3}$ as many cones as she had at the beginning of the day. By the end of the day, she only had $\frac{2}{3}$ as many cones as she had at noon. How many ice cream cones does she have at the end of the day?
Докажем от противного:
пусть прямая m не параллельна пл-сти b
тогда прямая m либо лежит в плоскости b либо пересекает ее.
из условия сказано, что прямая a лежит в плоскости a, тогда остается 1 случай : прямая m пересекает плоскость b.
поскольку прямая m лежит в пл-сти а и при этом пересекает пл-сть b - это возможно только в том случае, если пл-сти a и b -пересекают, но по условию -они параллельны. Мы пришли к противоречию. Отсюда следуем, что прямая m параллельна пл-сти b
At the beginning of the day, Margaret had 72 ice cream cones. By noon, she had $\frac{2}{3}$ as many cones as she had at the beginning of the day. By the end of the day, she only had $\frac{2}{3}$ as many cones as she had at noon. How many ice cream cones does she have at the end of the day?
Объяснение:
At the beginning of the day, Margaret had 72 ice cream cones. By noon, she had $\frac{2}{3}$ as many cones as she had at the beginning of the day. By the end of the day, she only had $\frac{2}{3}$ as many cones as she had at noon. How many ice cream cones does she have at the end of the day?