1. От чего зависит взаимное расположение прямой и окружности?
2. Перечислите случаи взаимного расположения прямой и окружности и сделайте рисунки.
3. Какую прямую называют касательной к окружности?
А) Нарисуйте прямую l и окружность c, которые не имеют общих точек пересечения. Нарисуйте несколько окружностей, которые имеют с прямой l и окружностью c по одной точке пересечения.
Б) Далее через центр окружности c проведите прямую m, перпендикулярную прямой l. Нарисуйте две окружности, с центрами на m, которые имеют одну точку пересечения с прямой l и окружностью c.
SMBK/SABC = 2•3/4•5 = 6/20 = 3/10
10SMBK = 3ABC
SMBK = 0,3SABC
Известно, что SABC = SMBK + 7√15/4
SABC = 0,3SABC + 7√15/4
0,7SABC = 7√15/4
SABC = 7√15/4 : 0,7
SABC = 5√15/2
По теореме о площади треугольника:
SABC = 1/2AB•BC•sinABC, откуда sinABC = 2SABC/(AB•BC)
sinABC = 5√15/(4•5) = √15/4
По основному тригонометрическому тождеству:
cosABC = √1 - sinABC² = √1 - 15/16 = 1/4
По теореме косинусов:
MK² = MB² + BK² - 2MB•BK•cosABC
MK² = 2² + 3² - 2•2•3•1/4 = 4 + 9 - 3 = 10
MK = √10.
ответ: MK = √10.
В четырехугольник можно вписать окружность только тогда, когда суммы его противоположных сторон равны.
Трапеция - четырехугольник.
Тогда сумма боковых сторон равна 16+4=20 см, а каждая из них равна 10 см.
Опустив из тупых углов трапеции высоты, получим прямоугольник и два равных прямоугольных треугольника с гипотенузой 10 и одним из катетов на большем основании, равным (16-4):2=6.
Высоты - вторые катеты- можно найти по т. Пифагора, они равны 8 см. Диаметр вписанной в трапецию окружности равен ее высоте.
Длина ее =2πr=π•d=8π см