1. отметьте 2 точки На прямой: а) сколько лучей;
Б) сколько отрезков образовалось, обозначьте его буквой и назовите. [2]
2. определить градусные величины всех углов, образованных пересечением двух прямых. Градусная величина одного из образовавшихся углов равна 125°. [2]
3.между стенками угла КОЕ проведен луч ОС. <КОС = 52°, <СОЕ = 18°. Найдите величину угла KOE. [3]
4.от вершины плоского угла ВАЕ в одной полуплоскости проведены лучи АС и АD. Чему равен угол САD, если < EAD= 60°,
Рис. 5. построение прямоугольного треугольника АВС:
а) все медианы;
б) всех высот;
б) нарисуйте средние линии по отдельности. [3]
6. периметр треугольника равен 28 см, а одна из стенок равна 10 см. Чему равны длины, если разность двух других ребер равна 2 см. [4]
7. периметр треугольника 36 см. Отношение стенок треугольника 2:3: 4. Найдите длину его стенок. [3]
№1. Сторона правильной четырехугольной пирамиды равна а, а диагональное сечение - равносторонний треугольник. Найти объем пирамиды.
Пирамида QABCD, QO - высота, АQC- диагональное сечение, АВ=а.
V=S•h:3
S=a²
h=AC√3/2
AC=a:sin45°=a√2
h=a√6/2
V=a³√6/6
№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды.
Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD.
По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).
ОН - половина АD, ⇒АD=2OH=18 (см)
Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания.
S=15•18•4:2=540 см².
————————
№3. Условие неполное.
Объем V правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)
Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды.
———————
№4.
Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды.
S(бок)=3•MH•AB:2=3•8/3•8:2=32
————————
№5
Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды.
————————
№6.
Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником.
———————
Решения задач 4,5,6 даны в приложениях.
Объяснение:
Объяснение:Имеется четыре вершины A, B, C и D, значит фигура на рисунке представляет собой четырёхугольник. Известно, что два угла четырёх угольника ∠BAD=∠BCD=90°, по обозначению углов уже понятно, что это противоположные углы и, значит, наша фигура прямоугольник. Но даны ещё два угла, которые дополняют друг друга ∠ADB=15° и ∠BDC=75°. Сумма этих углов равна 90°. То есть имеем четырёхугольник у которого известно, что три угла равны 90°, значит это прямоугольник, а у прямоугольника все стороны параллельны, т.е. AD║BC.