1. отрезок ак – медиана треугольника авс с прямым углом с. докажите, что ∠вак< ∠авс< ∠акс< ∠асв. 2. прямые, содержащие биссектрисы внешних углов при вершинах в и с треугольника авс, пересекаются в точке о. найдите угол вос, если угол а равен 50 градусов
1) угол COB равен углу AOD, т.к. они вертикальные (вертикальные углы-это такие углы у которых стороны одного угла являются продолжением сторон другого угла, и образуются при пересечении двух прямых)
2) AO=OB, т.к. О является серединой данной прямой, а значит делит ее на две равные части.
3) OC=OD смотри пункт выше.
ВЫВОД: треугольник COB равен треугольнику AOD по первому признаку равенства треугольников (по двум сторонам и углу между ними)
P.s. Первый признак равенства треугольников-если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны
Второй признак равенства треугольников - если сторона и два прилежащих к ней угла соответственно равны стороне и двум прилежащим к ней угла другого треугольника, то такие треугольники равны
Третий признак равенства треугольников - если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны
:)
АВ=ВС, АМ=МС
Док-ть: ВМ делит АС пополам
Р ABCM=26см, AB-CM=3см
АМ-?
1. Рассмотрим треугольники ABM и CBM. АВ=ВС, АМ=СМ по условию и ВМ-общая, значит треугольники равны.
2. Пусть H- точка пересечения ВМ с АС. Рассмотрим треугольники ABH и CBH. Т.к. АВС равнобедренный, то углы CAB и ACB равны, углы АВМ и СВМ равны по п.1, а AB=BC по условию, значит ABH=CBH AH=HС. Ч.т.д.
3. Рассмотрим ABCM. AB=BC, AM=CM. AB-CM=AB-AM=3. AB=3+AM
P=2×(AB+AM)
26=2×(3+AM+AM)
23=3+2AM
20=2AM
AM=10
ответ: АМ=10 см.