1.Площадь основания правильной четырехугольной пирамиды равна 6, боковое ребро
наклонено с плоскостью основания под углом 60°. Найдите объем пирамиды.
2. Угол между высотой правильной треугольной пирамиды и апофемы равен 60°.
Найдите объем пирамиды, если апофема равна 2√3.
3. В правильной четырехугольной пирамиде высота равна 12 см, а апофема 15 см.
Найдите боковое ребро пирамиды.
В нашем случае гипотенуза - 19, а один из острых углов - 30°. В прямоугольном треугольнике против угла 30° лежит катет в два раза меньший гипотенузы. Угол 30° - меньший из углов треугольника. Против меньшего угла лежит меньшая сторона. Таким образом меньшая диагональ равна 19/2*2=19 ед.
И самый простой
Второй угол ромба - 180-60=120°. Диагональ делит его на равносторонний треугольник. Меньшая диагональ равна 19 ед.
h=b*tg(φ)
S=b*b*sin(β)/2 - площадь основания
V=h*S=b^3*tg(φ)*sin(β)/2
2.
Все боковые ребра пирамиды образуют с ее высотой одинаковый угол и значит боковые ребра равны и значит проекции ребер равны, значит проекция вершины пирамиды лежит в центре описанной окружности около треугольника основания.
для равнобедренного треугольника с основанием а=12 см и углом при вершине 120° радиус описанной окружности R=a/корень(3),
(надо рисовать круг, в нем треугольник, вычислять ... я это сделал на черновике)
высота пирамиды
h = R*tg(30)=a/3=4 см
S=2*(a/2)*(a/2)*tg(30)/2 = a^2*корень(3)/12 = 12*корень(3) см^2
V = S*h/3 =12*корень(3)*4/3=16*корень(3) см^3