1. построить две прямые, пересеченные третьей. отметить и подписать на чертеже одностороние, накрест лежащие, соответственные, вертикальные и смежные углы. 2.записать определение параллельных прямых. 3.записать формулировки трех признаков параллельных прямых. 4. записать формулировки и доказательства трех свойств параллельных прямых
H=4√2·sin45°=4
Диаметр основания
D(основания)=Н=4
R=D/2=2
V=πR²H=π2²·4=16π
В ответе 16π:π=16
2.
V₁:V₂=πR²₁H₁:πR²₂H₂=3²·5:5²·3=3:5=0,6
3.
Диагональ осевого сечения делит прямоугольник на два равных прямоугольных треугольника с острыми углами в 30° и 60°.
Катет, против угла в 30°( высота цилиндра) равен половине гипотенузы 4/2=2
Диаметр основания по теореме Пифагора
D= √(4²-2²)=√12=2√3
Радиус основания R=D/2=√3
V=πR²H=π(√3)²·2=6π
В ответе 6π:π=6
4) S(бок. цилиндра)=2π·R·H
2π·R·H=2π
R·H=1
D=1 ⇒ 2R=1 ⇒ R=1/2
H=2
V=πR²H=π(1/4)·2=(1/2)π
В ответе (1/2)π:π=1/2=0,5
С другой стороны треугольники EBC и LDC подобны, поэтому EB/DL=BC/CD. Аналогично, треугольники BKC и DFC подобны, поэтому BK/FD=BC/CD. Значит EB/DL=BK/FD.
Перемножим полученные равенства EB/FD=BK/DL и EB/DL=BK/FD. Находим, что EB²/(FD·DL)=BK²/(DL·FD). После сокращения, EB²=BK², т.е. EB=BK. Отсюда и из равенства EB/FD=BK/DL следует, что и FD=DL.
Все подобия здесь по двум углам в силу парллельности прямых EK и FL.