1. Провести прямую.
2. На прямой от выбранной точки А ОТЛОЖИТЬ
отрезок, равный данному отрезку а, и
отметить другой конец отрезка В.
3. Провести окружность с центром Аи
радиусом, равным отрезку b.
4. Провести окружность с центром Ви
радиусом, равным отрезку с.
5. Точка пересечения окружностей является
третьей вершиной ИСКомого треугольника.
Согласно признаку равенства треугольников
По трём сторонам построенный треугольник
равен со всеми треугольниками, которые
имеют данные стороны.
∠В=∠С
∠А=∠Д
Сумма углов по условию равна 86°.
Значит каждый угол 43°
Пусть углы при нижнем основании обозначены А и Д, оба угла острых,
∠А=∠Д=43°
Сумма углов, прилежащих к боковой стороне равна 180°.
∠А+∠В=180°, значит ∠В=180°-43°=137°
∠В=∠С=137°
О т в е т. 43°; 137°; 137°; 43°
2) В прямоугольной трапеции одна боковая сторона перпендикулярна основанию.
Пусть
∠А=В=90°
Сумма углов, прилежащих к боковой стороне равна 180°.
∠С+∠Д=180°
По условию
∠С-∠Д=32°
Система двух уравнений:
{∠С+∠Д=180°
{∠С-∠Д=32°
Складываем
2·∠С=212°
∠С=106°
∠Д= ∠С - 32° = 106° - 32° = 74°
О т в е т. 74° и 106 °
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см