1. Составьте общее уравнение прямой проходящей через точки А(2;6) и B(-4;0) [2] [2] 2. Точки O(0;0), A(5; 5), C(1;3) В являются вершинами параллелограмма. Найдите абсциссу точки В . [3] 3. Даны точки А, В, С. Если A(-4; 2) и C(-1; -1) и точка В является серединой отрезка AC, АС, то найдите координаты точки В. [4] 4. а) Изобразите окружность, соответствующей уравнению (с - 5)? + (y - 10)2 =25 . b) Определите взаимное расположение прямой у = 5 и окружности (x - 5)? + (v - 10)2 = 25. [4] 5. Докажите, что четырехугольник с вершинами А (1;2), В (4;-1), C(8;3), D(5;6) является прямоугольником.
информация о том, что центром окружности, описанной около равностороннего треугольника является точка пересечения медиан, является лишней.
Центром окружности, описанной около треугольника, является точка пересечения его срединных перпендикуляров.
Срединными перпендикулярами любого равностороннего треугольника являются его высоты, они же медианы и биссектрисы.
Поэтому радиус R описанной около правильного треугольника окружности равен 2/3 его высоты h
h=a•sin 60°, где а - сторона треугольника, а углы равностороннего треугольника раны 60°.
h=6•√3/2=3√3
R=(3√3)•2/3=2√3 см
———————
3) Медиана делит исходный треугольник на два, у которых основания равны, а высота, проведенная из общей вершины, является для них также общей. (см. рисунок)
S(ABL)=AH•DL/2
S(ACL)=AH•CL/2
Так как BL=CL, то площади этих треугольников равны, а площадь каждого равна половине площади ∆ АВС, т.е.18:2=9 см².
---------
Мы получили свойство медианы треугольника, которое полезно запомнить:
Медиана треугольника делит его на два равновеликих, т.е. на треугольники с равной площадью.
ΔAOB образован хордой АВ и двумя радиусами сферы, ⇒
ΔAOB - равнобедренный ⇒ AC - высота и медиана
а) R = OA = 17 см; AB = 16 см
AC = 1/2 AB = 1/2 * 16 = 8 см
Расстояние от точки О до прямой АВ измеряется по перпендикуляру ⇒ расстояние равно длине отрезка OC
ΔAOC - прямоугольный. По теореме Пифагора
OC² = R² - AC² = 17² - 8² = 225 = 15²
OC = 15 см
б) AB = 12 см; OC = 8 см
AC = 1/2 AB = 1/2 * 12 = 6 см
ΔAOC - прямоугольный. По теореме Пифагора
R² = AC² + OC² = 6² + 8² = 100 = 10²
R = 10 см
в) d = 30 см; OC = 12 см
R = d/2 = 30/2 = 15 см
ΔAOC - прямоугольный. По теореме Пифагора
AC² = R² - OC² = 15² - 12² = 81 = 9²
AC = 9 см
AB = 2*AC = 2*9 = 18 см
ответ: а) расстояние 15 см; б) радиус сферы 10 см; в) AB = 18 см