1.Сторона параллелограмма равны 14 см и 7 см, а его площадь равна 84 см2. Найдите высоты параллелограмма. 2.В прямоугольном треугольнике с острым углом в 450 гипотенуза равна 8√2 см. Найдите катеты и площадь этого треугольника. 3.В прямоугольной трапеции основания равны 3 см и 8 см, а большая боковая сторона равна 13 см. Найдите площадь трапеции.
1) с=√(а²+b²) = √(16+9) =5см.
Sinα = a/c = 0,8. α ≈ 53°.
Sinβ = b/c = 0,6. β ≈ 37°.
2) b=√(с²-а²) =√(169-144) =5см.
Sinα = a/c = 12/13 ≈ 0,923. α ≈ 67°.
Sinβ = b/c = 5/13 ≈ 0,385. β ≈ 23°.
3) α=30°, значит а=0,5·с = 20см (катет a против угла 30°).
b = √(c²-a²) = √(40²-20²) = 20√3.
β = 60°. (по сумме острых углов прямоугольного треугольника).
4) α=45°, значит β = 45°. а=b= 4см, с= √(а²+b²) = √32 = 4√2см.
5) α=60°, значит β = 30°. (по сумме острых углов прямоугольного треугольника).
с=2·b = 10см (катет b против угла 30°).
а = √(с²-b²)= √75 = 5√3см.
6) а=√(с²-b²)=√(100-36) = √64 = 8дм.
Sinα = a/c = 0,8. α ≈ 53°.
Sinβ = b/c = 0,6. β ≈ 37°.
Вершины треугольника обычно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами (α,β,γ), а длины противоположных сторон — прописными латинскими буквами (a, b, c).
Неравенство треугольника
Стороны треугольника нельзя задавать произвольно, они связаны следующими неравенствами. В треугольнике сумма двух его сторон должна быть больше третьей стороны, в ином случае треугольник называется вырожденным.
a < b + c
b < c + a
c < a + b
В случае невыполнения одного из неравенств, треугольник называется вырожденным, далее везде предполагается невырожденный случай.
Признаки равенства треугольников
Треугольник однозначно (с точностью до конгруэнтности) можно определить по следующим тройкам основных элементов:
a, b, c (равенство по трём сторонам) ;
a, b, γ (равенство по двум сторонам и углу между ними) ;
a, β, γ (равенство по стороне и двум прилежащим углам) .
Типы треугольников
По величине углов
Поскольку сумма углов треугольника равна 180°, то не менее двух углов в треугольнике должны быть острыми (меньшими 90°). Выделяют следующие виды треугольников:
Если все углы треугольника острые, то треугольник называется остроугольным;
Если один из углов треугольника тупой (больше 90°), то треугольник называется тупоугольным;
Если один из углов треугольника прямой (равен 90°), то треугольник называется прямоугольным. Две стороны, образующие прямой угол, называются катетами, а сторона, противолежащая прямому углу, называется гипотенузой.
По числу равных сторон
Разносторонним называется треугольник, у которого длины трех сторон попарно различны.
Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, третья сторона называется основанием. В равнобедренном треугольнике углы при основании равны. Высота, медиана и биссектриса равнобедренного треугольника, опущенные на основание, совпадают.
Равносторонним называется треугольник, у которого все три стороны равны. В равностороннем треугольнике все углы равны 60°, а центры вписанной и описанной окружностей совпадают.