Допустим 3 см - длина основания. Тогда длины боковых сторон найдём из уравнения 2х+3=18, где х - длина боковой стороны. 2х=18-3=15 х=15/2=7,5 (см) - не подходит по условию задачи, так как длины сторон должны быть целочисленными. Значит, 3 см - длина боковой стороны. Длина другой боковой стороны также равна 3 см. Тогда длину основания найдём из уравнения 3+3+х=18, где х - длина основания. х=18-3-3=12 (см). ответ: две другие стороны равны 3 см и 12 см. * Замечу, что такого треугольника не может быть, так как в соответствии с неравенством треугольника сумма меньших сторон любого треугольника должна быть больше большей стороны треугольника. В нашем случае должно быть, чтобы 3+3>12, то есть 6>12, а это ложь. Поэтому ответом должно быть пустое множество.
Смотри аналог с описанием решения (Если будет что-то не понятно, то пиши мне ❤️)
Объяснение:
Известна формула нахождения координат середины отрезка по координатам его концов:
xc = (xa + xb)/2, yc = (ya + yb)/2, где (xc; yc) – координаты точки С, которая является серединой отрезка AB.
В нашем примере даны координаты одного конца и середины отрезка. Воспользовавшись выше приведенной формулой преобразуем его для вычисления второго конца отрезка:
2х=18-3=15
х=15/2=7,5 (см) - не подходит по условию задачи, так как длины сторон должны быть целочисленными.
Значит, 3 см - длина боковой стороны. Длина другой боковой стороны также равна 3 см. Тогда длину основания найдём из уравнения 3+3+х=18, где х - длина основания.
х=18-3-3=12 (см).
ответ: две другие стороны равны 3 см и 12 см.
* Замечу, что такого треугольника не может быть, так как в соответствии с неравенством треугольника сумма меньших сторон любого треугольника должна быть больше большей стороны треугольника. В нашем случае должно быть, чтобы 3+3>12, то есть 6>12, а это ложь.
Поэтому ответом должно быть пустое множество.
Объяснение:
vijohi8766
хорошист
20 ответов
2.9 тыс. пользователей, получивших
Смотри аналог с описанием решения (Если будет что-то не понятно, то пиши мне ❤️)
Объяснение:
Известна формула нахождения координат середины отрезка по координатам его концов:
xc = (xa + xb)/2, yc = (ya + yb)/2, где (xc; yc) – координаты точки С, которая является серединой отрезка AB.
В нашем примере даны координаты одного конца и середины отрезка. Воспользовавшись выше приведенной формулой преобразуем его для вычисления второго конца отрезка:
Xc = 2xb - xa, yc = 2yb - ya; xc = 2 * 6 - 6 = 6, yc = 2 * 6 – 4 = 8. C(6; 8).
Точка D — середина отрезка BC, поэтому xd = (xc + xb)/2, yd = (yc + yb)/2;
xd = (6 + 6)/2, yd = (8 + 6)/2; xd = 6, yd = 7. D(6;7).
ответ: C(6; 8); D(6;7).