1. Строите прямую a, параллельную данному отрезку [KN]. 2. Циркулем откладываем на этой прямой 3 равных отрезка так, чтобы они в сумме были длиннее, чем исходный отрезок. Получаем точки B, C, D, E, причем [BC]=[CD]=[DE], как радиусы окружностей, и [BE] > [KN] 3. Через начало первого отрезка и через конец последнего проводим 2 прямые, соединяющие эти точки с началом и концом данного отрезка. - Прямые (BK) и (EN) 4 Так как новый отрезок длиннее, чем данный, то эти прямые пересекутся в некоторой точке А. Таким образом, получится треугольник ABE с вершиной в точке А. Из этой точки строим 2 луча, пересекающие прямую а в точках C и D, которые мы отметили циркулем. Тогда на данном отрезке получатся 2 точки F и S, которые разобьют его на 3 равные части. То есть [KF]=[FS]=[SN]= 1/3[KN]
Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
2. Циркулем откладываем на этой прямой 3 равных отрезка так, чтобы они в сумме были длиннее, чем исходный отрезок. Получаем точки B, C, D, E, причем [BC]=[CD]=[DE], как радиусы окружностей, и [BE] > [KN]
3. Через начало первого отрезка и через конец последнего проводим 2 прямые, соединяющие эти точки с началом и концом данного отрезка. - Прямые (BK) и (EN)
4 Так как новый отрезок длиннее, чем данный, то эти прямые пересекутся в некоторой точке А. Таким образом, получится треугольник ABE с вершиной в точке А. Из этой точки строим 2 луча, пересекающие прямую а в точках C и D, которые мы отметили циркулем. Тогда на данном отрезке получатся 2 точки F и S, которые разобьют его на 3 равные части. То есть [KF]=[FS]=[SN]= 1/3[KN]
Итак, треугольники АОD и СОВ подобны с коэффициентом подобия
ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7.
ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.