1) Точка С - середина отрезка AB, paвнoгo 4. Найдите множество всех точек M, для каждой из которых АМ2-2BM2+5СМ2 = 3. 2)Точки A(1;3),C(5;5) и D(7;15)-вершины трапеции ABCD. Напишите уравнение прямой, содержащей среднюю линию трапеции, и уравнения прямых, содержащих её основания. Сравнитеугловые коофициенты этих прямых.
очень надо.
ответ:номер 1
1)BD = AC (дано)
2)BC = AD (дано)
3)BA - Общая строна
следовательно треугольник ABD = треугольнику ACB (ССС)
Следовательно в равных треугольниках все соответсвующие элементы равны.следовательно
угол ADB = углу ACB
номер 2
из дано следует что треугольник MNK р/б,а медиана проведенная к основанию еще является биссектрисой.(биссектриса делит угол на 2 равных)
следовательно медиана делит угол MNK на 2 равных угла,а MNK=120 градусов
следовательно 120:2=60 градусов
ответ:Угол MNC = 60 градусов
номер 3
пусть Xсм - это основание,то x+2 -это две стороны(т.к треугольник р/б)
получаем уровнение
x+x+2+x+2=13,63 x=13,6-2-23x=9,6 x=9,6:3
x=3,2
3,2+2=5,2 см -это две стороны
ответ: 3,2 см ; 5,2 см ; 5,2 см.
номер 4
Если PM=PK, это значит то что точка P расположен в середине угла MAKследовательно AP - биссектриса угла MAKссори если не понятно
дано: решение
c = 17 (см) p = a + b + c
a = x пусть катет a = x, тогда катет b = x - 7
b = x - 7 так как треугольник прямоугольный, то
x мы найдем по теореме пифагора:
p - ? c² = x² + (x - 7)²
17² = x² + x² - 14x + 49
2x² - 14x + 49 - 289 = 0
2x² - 14x - 240 = 0
d₁ = 7² - 2 * (-240) = 49 - (-480) = 529
d₁ > 0, уравнение имеет 2 корня.
x₁ = -(-7) + √529 / 2 = 7 + 23 / 2 = 30 / 2 = 15
x₂ = -(-7) - √529 / 2 = 7 - 23 / 2 = -16 / 2 = -8
второй корень уравнение не подойдет, т.к он имеет отрицательное значение, а длина не может быть отрицательным числом, значит x = 15.
a = 15
b = 15 - 7 = 8
p = 17 + 15 + 8 = 40 (см)
ответ: p = 40 (см)