1. Точка — середина отрезка BC. Найдите координаты точки В,
если м(-6; 8) и C (12; - 14).
2 а) AB - диаметр окружности с центром 0. Найдите координаты центра
окружности, если я (9 -2) и В (-1; -6).
[2]
b) Запишите уравнение окружности, используя условия пункта а).
3. Выполнив построение, выясните взаимное расположение двух окружностей,
заданных уравнениями (х+3)2 +(y-2)2 = 25 и (х-2)2 +(-1)2 =1
[3]
4. Точки А (-3; - 4), В (5; - 4), C (5; 6), D(-3; 2) – вершины прямоугольной трапеции.
Найдите среднюю линию и площадь трапеции.
(5)
1) ВС=AD+CD=20 (см)
∆ АВС равнобедренный, АВ=ВС=20 (см)
∆ АВD- прямоугольный
AD=√(AB²-BD²)=√144=12 (см)
Из ∆ АDC гипотенуза АС=√(AD²+CD²)=√160=4√10 см
S (ABC)=AD•BC:2=12•20:2=120 см²
* * *
2) Примем меньший катет равным х, тогда гипотенуза 2х.
По т.Пифагора (2х)²-х*=36 ⇒ х=√12=2√3 м – это ответ.
* * *
3) Ромб - параллелограмм с равными сторонами, его диагонали взаимно перпендикулярны. Отрезок, перпендикулярный противоположным сторонам параллелограмма равен его высоте.
МК параллелен и равен высоте ромба ВН.
Точка О делит диагонали пополам, а сам ромб - на 4 равных прямоугольных треугольника.
АО=АС:2=32:2=16 .
ВО=ВD:2=12
Из ∆ АОВ по т.Пифагора АВ=√(АО²+ВО²)=√ 400=20
а) Площадь ромба равна половине произведения его диагоналей.
S=AC•BC:2=32•24:2=384
б) Площадь ромба равна произведению высоты на его сторону.
S=a•h – h=S:a
h=384:20=19,2