1. точки a(-4; 1) и b (4; 7) являются концами диаметра окружности. найдите: а) диаметр окружности. б) координаты центра окружности. в) запишите уравнение окружности. 2. определите вид четырехугольника, если а(1; 4) в(4; 0) с(0; 3) d(-3; 1). 3. запишите уравнение прямой проходящей через две
точки, если а(-1; 0) в(2; 4). 4. найдите точку пересечения двух прямых, заданных уравнениями 3x-y-2=0 и 2x+y-8=0.
--------------
Пусть основание треугольника АВС = 2а
И угол при основании Ф
АР = а
АН = а*cos Ф
КН = а*sin Ф
s(АКН) = 1/2 a^2*sin Ф*cos Ф = 1
--------------------
Теперь вычислим площадь треугольника АВС
Высота треугольника ВР
ВР/АР = tg Ф
ВР = а*tg Ф
Основание АС = 2а
s(АВС) = 1/2*2а*а*tg Ф = а^2*tg Ф = 4
---------------
Осталось решить систему уравнений
1/2 a^2*sin Ф*cos Ф = 1
а^2*tg Ф = 4
разделим первое на второе
1/2 sin Ф*cos Ф / tg Ф = 1/4
sin Ф*cos Ф / (sin Ф/cos Ф) = 1/2
cos^2 Ф = 1/2
cos Ф = 1/√2
Ф = 45°
Найти: МВ
Решение: угол MNL = угол LNP (так как NL биссектриса). если NP и MK параллельны ( ибо MNLP - параллелограмм, за его свойством паралельности сторон) а NL - секущая, то угол LNP = углу NLM (как внутренние разносторонние), а с этого следует, что треугольник MNL - равнобедренный (так как угол LNP = углу NLM, как углы при основе). Значит, ML = MN = 4 cм, а из этого следует, что MN = KP = 4 cм (за свойством параллелограмма). Так как МВ - средняя линия, то КВ = ВР = 2 см (за теоремой про свойство средней линии). МК = ТЗ = 6 см (за свойством параллелограмма про равенство противолежащих сторон). Рассмотрим трапецию LNPK и найдём среднюю линию. Если LK равно 2 см, а NP равно 6 см, то МВ = (6 + 2) : 2 = 4 см (за свойством средней линии).