1. Треугольник называется равнобедренным, если любые две его стороны равны.
2. В равнобедренном треугольнике высота, проведённая к основанию является биссектрисой и медианой.
3. При пересечении двух прямых образовалось четыре угла. Один из углов равен 53 градуса . Найти остальные три угла.
ответ: другой, вертикальный к нему же равен 53°. Смежные с ним углы будут равны 180°-53°=127°. Этих углов тоже два.
4. Основание равнобедренного треугольника 14 см, а периметр 66 см. Найти длины боковых сторон треугольника.
ответ: (66-14):2=26 см длины боковых сторон треугольника.
5. Один из смежных углов на 24 градуса больше другого. Найти эти углы. ответ: Пусть х градусов мера одного угла, тогда (х+24)° - мера второго угла. Тогда сумма смежных углов равна 180°.
х+х+24°=180°
2°+24°=180°
2х°=180°-24°
2х=156°
х=156°:2
х=78° мера одного смежного угла.
78°+24°=102° мера второго смежного угла.
6. Градусные меры смежных углов относятся как 2:7. Найти эти углы. ответ: Пусть 2х - мера одного угла, тогда 7х - мера другого угла. Тогда их сумма равна 180°.
2х+7х= 180°
9х=180°
х=180°:9
х=20°.
Тогда первый угол равен 2х=2*20°=40°, второй угол равен 7х=7*20°=140°.
7.Сформулируйте 2 признак равенства треугольников и начертите рисунок к нему
1. Треугольник называется равнобедренным, если любые две его стороны равны.
2. В равнобедренном треугольнике высота, проведённая к основанию является биссектрисой и медианой.
3. При пересечении двух прямых образовалось четыре угла. Один из углов равен 53 градуса . Найти остальные три угла.
ответ: другой, вертикальный к нему же равен 53°. Смежные с ним углы будут равны 180°-53°=127°. Этих углов тоже два.
4. Основание равнобедренного треугольника 14 см, а периметр 66 см. Найти длины боковых сторон треугольника.
ответ: (66-14):2=26 см длины боковых сторон треугольника.
5. Один из смежных углов на 24 градуса больше другого. Найти эти углы. ответ: Пусть х градусов мера одного угла, тогда (х+24)° - мера второго угла. Тогда сумма смежных углов равна 180°.
х+х+24°=180°
2°+24°=180°
2х°=180°-24°
2х=156°
х=156°:2
х=78° мера одного смежного угла.
78°+24°=102° мера второго смежного угла.
6. Градусные меры смежных углов относятся как 2:7. Найти эти углы. ответ: Пусть 2х - мера одного угла, тогда 7х - мера другого угла. Тогда их сумма равна 180°.
2х+7х= 180°
9х=180°
х=180°:9
х=20°.
Тогда первый угол равен 2х=2*20°=40°, второй угол равен 7х=7*20°=140°.
7.Сформулируйте 2 признак равенства треугольников и начертите рисунок к нему
Решение в приложении. Там 3 рисунка.
Дана правильная треугольная пирамида SABC, сторона основания AB равна 10, а высота SH равна 24. Точки M и N - середины рёбер SB и AB.
а) Находим длину L бокового ребра.
Перед этим определяем высоту основания:
h = a√3/2 = 10√3/2 = 5√3.
L = √(H² + ((2/3)h)²) = √(24² + (10√3/3)²) = 2√(457/3).
Теперь находим апофему А боковой грани.
A = √(H² + ((1/3)h)²) = √(24² + (5√3/3)²) = √(1753/3).
Заданная плоскость, проходящая через точки M и C параллельно прямой SN, пересекает ребро AB в точке K.
При этом линия сечения МК параллельна апофеме А = SN.
Поскольку SK - средняя линия треугольника NSB , то она делит NB пополам, или КВ = (1/4)АВ,
Доказано: AK:KB=3:1.
б) Находим длины сторон треугольника СМК, являющегося сечением пирамиды заданной плоскостью.
CK = √(h² + (a/4)²) = √((5√3)² + (10/4)²) = √75 + (25/4)) = √(325/4) = (5/2)√13.
MK = (1/2)A = (1/2)√(1753/3).
СМ находим как медиану треугольника BSC по теореме косинусов.
CM = √((L/2)² + a² - 2*(L/2)*a*cosB) =
= √((457/3) + 100 - 2*(1/2)√(1753/3)*0,20255) = 14,2244.
Площадь по формуле Герона равна: S = 54,11336 кв.ед.
ответ: S(CMK) = 54,11336 кв.ед.