1) в основании правильной пирамиды mabcd лежит квад- рат abcd. найдите расстояние от центра грани abcd до ребра мс, если высота пирамиды равна 6, а длина ребра мс равна 9. 1) 3 корень5 2) 5 3) 2 корень5 4) 4 корень52) в пирамиде равс ребро рв перпендикулярно плоскости авс. основанием пирамиды является треугольник, в котором уголc =90°, ac=bc=8. точка м лежит на ребре ар, причем am : mp = 3 : 1. найдите расстояние от точки м до плоскости рвс. 1) 2 2) 4 3) 6 4) 3ришите мне с даном и с решением 20
Рассмотрим треугольник из - диагонали 17 см, высоты h и отрезка основания 10.5 + 4.5 = 15 см
по теореме Пифагора
h² + 15² = 17²
h² = 17² - 15²
h² = (17+15)(17-15) = 32*2 = 64
h = 8 см
Найдём боковую сторону из прямоугольного треугольника, содержащего боковую сторону как гипотенузу, высоту как катет и отрезок основания в 6 см как второй катет
z² = 6² + 8²
z² = 36 + 64 = 100
z = 10 см
Сиагональ и часть трапеции сверху от диагонали - это треугольник со сторонами 9, 10, 17 см
Описанная окружность этого треугольника и трапеции совпадают
Полупериметр этого треугольника
p = (9 + 10 + 17)/2 = 36/2 = 18 см
Площадь по формуле Герона
S² = 18*(18-9)*(18-10)*(18-17) = 18*9*8 = 9*9*16
S = 9*4 = 36 см²
Радиус описанной окружности
R = abc/(4S) = 9*10*17/(4*36) = 10*17/(4*4) = 85/8 см