1) В правильной четырёхугольной пирамиде сторона основания равна а, высота равна 3а. Найдите тангенс угла наклона боковых рёбер и боковых граней к плоскости основания.
2) Дана прямая призма, в основании которой лежит равнобедренная описанная около окружности трапеция ABCD с боковой стороной, равной 5, и высотой, равной 3. Боковое ребро призмы равно 2. Найдите площадь полной поверхности призмы. (Применить свойство вписанного в окружность четырехугольника).
Задача 2Т.к. AB=BC, AF=EC=AB/2=BC/2;Рассмотрим треугольники AFC и CEAОни равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA)Тогда углы EAC=FCA.Значит, угол BAE=BAC-EAC=BCFУглы FMA=EMC, как вертикальыеТогда углы AFM=180-FMA-FAM=MECЗначит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM)Тогда AM=MC => треугольник AMC - равнобедренный
B C
M
A D
< BAC = <AMD - как внутренние накрест лежащие при параллельных прямых AB и CD и секущей AM. Значит треугольник AMD - равнобедренный ,причём AD = MD. Пусть коэффициент пропорциональности равен k, тогда CM = k, а MD = AD = 3k.
По условию периметр параллелограмма равен 84 cм, тогда полупериметр равен 42 см, то есть AD + CD = 42
AD = 3k, а CD = CM + MD = k + 3k = 4k
3k + 4k = 42
7k = 42
k = 6
AD = 3 * 6 = 18 см
CD = 4 * 6 = 24 см
ответ : 18 см, 18 см, 24 см, 24 см