1)в прямом параллелепипеде стороны основания равны 10 см и 17 см; одна из диагоналей основания равна 21 см; бoльшая диагональ параллелепипеда равна 29 см. определить полную поверхность параллелепипеда. 2) в прямом параллепипеде
стороны основания 3 см и 8 см, угол между ними содержит 60 градусов. боковая поверхность параллепипеда равна 220 см2. определить полную поверхность и площадь меньшего диагонального сечения. 3) основанием прямого параллепипеда
служит ромб с диагоналями 6 см и 8 см, диагональ боковой грани равна 13 см. определить полную поверхность этого параллепипеда.
Прямой параллелепипед
Площадь боковой поверхности Sб=Ро*h, где Ро — периметр основания, h — высота параллелепипеда
Площадь полной поверхности Sп=Sб+2Sо, где Sо — площадь основания
Объём V=Sо*h
1.
D^2=Dосн^2 +h^2
Половина основания -это треугольник.
Площадь треуг. по формуле Герона
где р- полупериметр, a b c -стороны= 10 17 21р=(10+17+21) /2Sосн=2S=h= V (D^2-Dосн^2)= V (29^2-21^2)=
Sполн= 2*Sосн+Sб=2*()+2*(10+17)*h=...
2.Найдем длину диагонали по теореме косинусов
Dосн =V 3^2+8^2 -2*3*8 *cos60 =
потом площадь основания аналогично 1.
потом полную поверхность аналогично 1.
площадь S меньшего диагонального сечения= Dосн*h
где h=Sб /Росн
3.Sосн=1/2*d1*d2=1/2*6*8=24
сторона ромба b = V (6/2)^2 +(8/2)^2= 5
высота паралл h= V D^2 - b ^2 = V 13^2 -5^2 = 12
все данные есть
потом полную поверхность аналогично 1.