1. В тетраэдре ABCD точки M, K, P – середины рёбер AB, BD и BC. Докажите, что плоскость MKP параллельна плоскости ACD, и найдите площадь Δ MKP, если площадь Δ ACD равна 96 см².
2. В тетраэдре NMEF точки A, B, C – середины рёбер MN, NE и NF.
Докажите, что плоскость ABC параллельна плоскости MEF, и
найдите площадь Δ MEF, если площадь Δ ABC равна 36 см².
Так как по условию, точки М, К, Р середины отрезков АВ, ВД, ВС, то отрезок КМ средняя линия треугольника АВД, КР – средняя линия треугольника ВСД, МР – средняя линия треугольника АВС.
Отрезки средних линий параллельны основаниям треугольников: MK || АД, КР || СД, МР || АС, тогда и плоскость МКР параллельны плоскости АСД, что и требовалось доказать.
Длина средней линии треугольника равна половине длины параллельной стороны, тогда треугольник МКР подобен треугольнику АСД по трем пропорциональным сторонам с коэффициентом подобия К = АД / МК = АД / (АД / 2) = 2.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Sавс / Sмкр = 48 / Sмкр = 22.
Sмкр = 48 / 4 = 12 см2.
ответ: Площадь треугольника МКР равна 12 см2.