1. В треугольнике ABC ∠A=15°, а угол В на 8° больше
угла А. Найдите внешний угол при вершине С.
2. Две стороны равнобедренного треугольника равны 12 см и 8 см. Определите, какая из них является боковой стороной треугольника. ответ обоснуйте.
3. Угол между биссектрисой BL и катетом АС промо- угольного треугольника ABC (∠C-90°) равен 55°. Найдите острые углы треугольника АВС.
4. В окружности с центром в точке О проведены хорда АВ и диаметр ВС. Найдите углы треугольника АОВ, если∠ACO=24°
5. В прямоугольном треугольнике из вершины угла, равного 60°, проведена биссектриса. Расстояние от основания биссектрисы до вершины другого острого угла равно 14 см. Найдите расстояние от основания биссектрисы до вершины прямого угла.
Дано :
KP || NM.
∡NKP = 120°, ∡NKM = 90°.
Найти :
∡N = ?
∡M = ?
При пересечении двух параллельных прямых секущей сумма внутренних односторонних углов равна 180°.Рассмотрим параллельные прямые КР и NM при секущей KN. По выше сказанному ∡N + ∡NKP = 180°⇒∡N = 180° - ∡NKP = 180° - 120° = 60°.
Рассмотрим эти же прямые при секущей КМ.
∡NKM + ∡MKP = ∡NKP⇒∡MKP = ∡NKP - ∡NKM = 120° - 90° = 30°.
При пересечении двух параллельных прямых секущей внутренние накрест лежащие углы равны.Следовательно, ∡MKP = ∡M = 30°.
∡N = 60°, ∡M = 30°.
Проведенные высоты образуют 4 прямоугольных треугольника (два маленьких и два больших),то угол = 48 градусов - один из углов маленького прямоугольного треугольника,следовательно второй угол будет равен 90-48=42 градуса;угол,равный 42 градуса также является одним из углов большого прямоугольного треугольника,второй непрямой угол которого лежит в вершине равнобедренного треугольника.Следовательно,угол при вершине равен 90-42=48 градусов
Т.к. данный треугольник равнобедренный,то углы при основании равны и их сумма сост.180-48=132 градуса
Значит,один угол при основании равен 132/2=66