1. В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 49. Найдите площадь четырёхугольника ABMN.
2.Какие из следующих утверждений верны?
(Укажи несколько правильных вариантов ответа)
А. Через любые три точки проходит не более одной прямой.
Б. Если при пересечении двух прямых третьей прямой внутренние односторонние углы равны 83° и 97° , то эти две прямые параллельны.
В. Если угол равен 70° , то смежный с ним равен 110° .
Г. Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы составляют в сумме 140° , то эти две прямые параллельны.
1. S ромба = asin, где а-сторона ромба, -угол
S = 8^2*sin150= 64*sin(180-30)=64*sin30=64*1/2=32 (см2)
2. Параллелограм АВСД, АВ=5 , ВД=7, Угол А=60
Проводим перпендикуляр ВК на АД.
Треугольник АВК, прямоугольный , угол А= 60, угол АВК=90-60=30
АК = 1/2 АВ =5/2 =2,5 , тю к лежит напротив угла 30
ВК = корень(АВ в квадрате - АК в квадрате) = корень (25 - 6,25) = корень 18,75 =4,3
В треугольнике ВКД :
КД = корень (ВД в квадрате - ВК в квадрате) = корень (49-18,75)= корень 30,25=5,5
АД = 2,5+5,5=8
Площадь= АД х ВК = 8 х 4,3 = 34,4 см2
3. S=(6+9)*3,5=52,5 см2
4. на фото решение
Противоположные стороны параллелограмма равны.
AD = BC = 30,2 см
AB = CD = 13,3 см
Объяснение:
Диагонали параллелограмма точкой пересечения делятся пополам, =>
АО = ОС = АС / 2 = 20 см
BO = OD = BD /2 = 12 см
Из ΔАВО по теореме косинусов:
АВ² = АО² + ВО² - 2АО·ВО·cos40°
AB² = 400 + 144 - 2 · 20 · 12 · 0,766 ≈ 176,32
AB = 13,3 см
∠ВОС = 180° - 40° = 140° (так как, они смежные)
Из треугольника ВОС по теореме косинусов:
BC² = BO² + CO² - 2BO·CO·cos140°
BC² = 144 + 400 - 2 · 12 · 20 · (- 0,766) ≈ 911,68
BC = 30,2 см