1) Верно ли утверждение параллельности прямой и плоскости: "прямая параллельна какой либо прямой на плоскости параллельны из одной плоскости" 2) Прямые A и B параллельны. Какое положение может занимать прямая А относительно плоскости проходящей через прямую В?
3) Одна из двух параллельных прямых параллельна некоторой плоскости. Можно ли утверждать, что и вторая прямая параллельна этой плоскости?
4) верно ли утверждение: если две прямые не имеют общих точек то они параллельны?
5) Две прямые параллельны некоторой плоскости. Могут ли эти прямые:
1.пересекаться ?
2.быть скрещивающимися ?
6)верно ли утверждение, что если прямая, не лежащая в плоскости, параллельна ей, то она параллельна любой прямой, лежащей в этой плоскости?
ответьте и обоснуйте каждый вопрос
1) Если точка А лежит между точками В и С, тогда АВ + АС = ВС. Проверим:
АВ + АС = 4,3 + 7,5 = 11,8 (см)
ВС = 3,2 (см)
11,8 см ≠ 3,8 см ⇒ точка А не может лежать между точками В и С.
2) Если точка С лежит между точками А и В, тогда АС + ВС = АВ. Проверим:
АС + ВС = 7,5 + 3,2 = 10,7 (см)
АВ = 4,3 (см)
10,7 см ≠ 4,3 см ⇒ точка С не может лежать между точками А и В.
3) Если точка В лежит между точками А и С, тогда АВ + ВС = АС. Проверим:
АВ + ВС = 4,3 + 3,2 = 7,5 (см)
АС = 7,5 (см)
7,5 см = 7,5 см ⇒ точка В лежит между точками А и С.
Углы при основании равнобедренного треугольника равны. Если этот угол равен 60°, значит и угол при вершине равен 60° (сумма внутренних углов треугольника равна 180°, 180°-120°=60°). Значит треугольник РАВНОСТОРОННИЙ (правильный). Высота правильного треугольника является и его медианой, и его биссектрисой. Пусть половина стороны равна х, тогда сторона равна 2х (так как катет х лежит против угла 30°). По Пифагору 4х² =(√3)²+х². => х=1. Итак, сторона треугольника равна 2.
ответ: стороны треугольника равны 2см.