1. Всякая плоскость пересекает шар по окружности. Расстояние от центра шара до плоскости - длина перпендикулярного к ней отрезка. Следовательно, этот отрезок перпендикулярен и радиусу окружности, отсекаемой плоскостью. Расстояние от центра до плоскости и радиус r окружности - катеты прямоугольного треугольника, радиус R шара - его гипотенуза. По т.Пифагора r=√(13²-12²)=5 см. Длина окружности 2pr=10π см
2. Вершины треугольника, которые лежат в сфере, являются вершинами треугольника, вписанного в окружность, образованную плоскостью, проходящей на расстоянии 5 см от центра шара. Т.к. треугольник - прямоугольный, центр окружности лежит на середине гипотенузы. ⇒ r=24:2=12 см. Радиус r и расстояние от центра сферы до центра окружности сечения - катеты прямоугольного треугольника, радиус R сферы - его гипотенуза. R= √(5²+12²)=13 см
Если двугранные углы равны между собой (а это углы между высотами боковых граней и плоскостью основания), значит проекции этих высот на основание также равны и, следовательно, высота пирамиды D проецируется в точку О - центр вписанной в основание окружности. Площадь основания найдем по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, а,b, и с - стороны треугольника. S=√(16*6*6*4)=48. Радиус вписанной окружности найдем из формулы: S=p*r: r=S/p. В нашем случае r=48/16=3. Высоту пирамиды найдем из прямоугольного треугольника, образованного высотой пирамиды, радиусом вписанной окружности (катеты) и высотой грани. Острые углы этого треугольника равны 45° (дано), значит высота пирамиды равна радиусу. Тогда V=(1/3)So*h или V=(1/3)48*3=48.
1. Всякая плоскость пересекает шар по окружности. Расстояние от центра шара до плоскости - длина перпендикулярного к ней отрезка. Следовательно, этот отрезок перпендикулярен и радиусу окружности, отсекаемой плоскостью. Расстояние от центра до плоскости и радиус r окружности - катеты прямоугольного треугольника, радиус R шара - его гипотенуза. По т.Пифагора r=√(13²-12²)=5 см. Длина окружности 2pr=10π см
2. Вершины треугольника, которые лежат в сфере, являются вершинами треугольника, вписанного в окружность, образованную плоскостью, проходящей на расстоянии 5 см от центра шара. Т.к. треугольник - прямоугольный, центр окружности лежит на середине гипотенузы. ⇒ r=24:2=12 см. Радиус r и расстояние от центра сферы до центра окружности сечения - катеты прямоугольного треугольника, радиус R сферы - его гипотенуза. R= √(5²+12²)=13 см
Площадь основания найдем по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, а,b, и с - стороны треугольника. S=√(16*6*6*4)=48.
Радиус вписанной окружности найдем из формулы: S=p*r: r=S/p.
В нашем случае r=48/16=3.
Высоту пирамиды найдем из прямоугольного треугольника, образованного высотой пирамиды, радиусом вписанной окружности (катеты) и высотой грани. Острые углы этого треугольника равны 45° (дано), значит высота пирамиды равна радиусу.
Тогда V=(1/3)So*h или V=(1/3)48*3=48.