а) пусть "х" – коэффициент пропорциональности ⇒ градусная мера одного из смежных углов равна 1х, а другого 4х. Сумма смежных углов равна 180°. Составим и решим уравнение:
Градусная мера одного смежного угла:
Градусная мера другого смежного угла:
________________________________________________
б) пусть "х" – коэффициент пропорциональности ⇒ градусная мера одного из смежных углов равна 3х, а другого 6х. Сумма смежных углов равна 180°. Составим и решим уравнение:
Объяснение:
а) пусть "х" – коэффициент пропорциональности ⇒ градусная мера одного из смежных углов равна 1х, а другого 4х. Сумма смежных углов равна 180°. Составим и решим уравнение:
Градусная мера одного смежного угла:
Градусная мера другого смежного угла:
________________________________________________
б) пусть "х" – коэффициент пропорциональности ⇒ градусная мера одного из смежных углов равна 3х, а другого 6х. Сумма смежных углов равна 180°. Составим и решим уравнение:
Градусная мера одного смежного угла:
Градусная мера другого смежного угла:
Условие не корректно составлено
Объяснение:
Чтобы треугольник существовал, необходимо чтобы сохранялось неравенство сумма двух сторон должна быть больше третьей стороны. а+b>c;
Проверяем треугольник со сторонами 8см; 8см; 16см.
8+8=16 неравенство не сохраняется, значит такого треугольника не существует.
Формула нахождения площади по Герону
S=√(p(p-a)(p-b)(p-c)); где р- полупериметр треугольника
р=(а+b+c)/2=(8+8+16)/2=32/2=16см
S=√(16(16-8)(16-8)(16-16))=√(16*8*8*0)=0 площади нет, так как треугольник не существует.