10
-
- -
- - - - - - - - -
- - - -
cp-3-21 - - - - - - - -
1.
один із күтів, утворених при перетині паралельних прямих січною, дорів
нює 101°. знайти інші сім кутів.
внутрішні односторонні кути, утворені при перетині паралельних прями»
січною, відносяться, як 3: 7. знайти ці кути.
при перетині двох паралельних прямих січною утворилося 8 кутів
менших від розгорнутого. сума трьох із них — 1989. визначити величини
кожного із цих восьми кутів.
3.
У параллельных прямых коэффициенты "к" равны.
Сторона АВ:
Уравнение прямой:
Будем искать уравнение в виде y = k · x + b .
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4;
b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 .
Искомое уравнение: y = 4 · x - 14 .
Сторона ВС:
k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5;
b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 .
Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД:
k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4;
b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 .
Искомое уравнение: y = 4 · x + 13 .
Сторона АД:
k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4;
b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 .
Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
Рассмотрим прямоугольный треугольник АВС, где угол А прямой. Вписанная окружность касается катета АВ в точке М, где АМ=2, МВ=8. Точка касания окружности со стороной АС точка Р, центр окружности точка О. Линии проведенные к точкам касания из цетра вписанной окружности перпендикулярны сторонам и являютс радиусами. Тогда тогда АМОР является квадратом и стороны равны 2. АМ=АР как касательные к окружности, проведенные из одной точки. Рассмотрим треугольник ВМО. у него угол М прямой, МВ и МО являются катетами. Отношение МО к МВ равно тангенсу угла МВО (tg альфа).Значит тангенс МВО=2/8=1/4. Так как центр вписанной окружности лежит на пересечением биссектрис, то ВО является биссектрисой угла АВС и равен 2МВО. Найдем тагенс АВС по формуле двойного угла. он равен 2tg альфа деленное на
1-tg^2 альфа. Подставив значения получаем 8/15. A в треугольнике АВС катет АВ=2+8=10, tg АВС=8/15, найдем катет АС=АВ*tgАВС=10*8/15=80/15=16/3=5 1/3, а гипотенузу находим по теореме Пифагора.ВС^2=10^2+(16/3)^2=1156/9
ВС=34/3=11 1/3 Получаем АВ=10, АС=5 1/3, а ВС=11 1/3