Периметр P правильного треугольника равен 36 см, а расстояние от некоторой точки до каждой из сторон треугольника 10см. Найдите расстояние от этой точки до плоскости треугольника.
Из заданной точки опускаем перпендикуляр h к плоскости треугольника. h - расстояние от этой точки до плоскости треугольника. Так как заданная точка равноудалена от каждой стороны треугольника, то и каждая точка перпендикуляра h тоже равноудалена от каждой стороны треугольника. На плоскости треугольника точка, равноудаленная от каждой сторон - это центр вписанной окружности. Радиус вписанной окружности r правильного треугольника r = P / 6√3 h находим по теореме Пифагора h = √( 10² - r² ) h = √( 10² - (P / 6√3)² ) h = √( 10² - (36 / 6√3)² ) = 2 √22 ( ≈ 9.38 ) см
Из заданной точки опускаем перпендикуляр h к плоскости треугольника. h - расстояние от этой точки до плоскости треугольника. Так как заданная точка равноудалена от каждой стороны треугольника, то и каждая точка перпендикуляра h тоже равноудалена от каждой стороны треугольника.
На плоскости треугольника точка, равноудаленная от каждой сторон - это центр вписанной окружности.
Радиус вписанной окружности r правильного треугольника
r = P / 6√3
h находим по теореме Пифагора
h = √( 10² - r² )
h = √( 10² - (P / 6√3)² )
h = √( 10² - (36 / 6√3)² ) = 2 √22 ( ≈ 9.38 ) см
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.