10 класс. с определениями, теориями и доказательствами .
(1.1) сформулируйте определение параллельных прямой и плоскости в пространстве.
(2.2) докажите теорему о параллельных трёх прямых в пространстве.
(3.2) докажите признак параллельности прямой и плоскости.
(4.1) сформулируйте определение параллельных прямых в пространстве.
(4.2) докажите теорему о существовании и единственности плоскости, проходящие через прямую и точку.
заранее
1. S ромба = asin, где а-сторона ромба, -угол
S = 8^2*sin150= 64*sin(180-30)=64*sin30=64*1/2=32 (см2)
2. Параллелограм АВСД, АВ=5 , ВД=7, Угол А=60
Проводим перпендикуляр ВК на АД.
Треугольник АВК, прямоугольный , угол А= 60, угол АВК=90-60=30
АК = 1/2 АВ =5/2 =2,5 , тю к лежит напротив угла 30
ВК = корень(АВ в квадрате - АК в квадрате) = корень (25 - 6,25) = корень 18,75 =4,3
В треугольнике ВКД :
КД = корень (ВД в квадрате - ВК в квадрате) = корень (49-18,75)= корень 30,25=5,5
АД = 2,5+5,5=8
Площадь= АД х ВК = 8 х 4,3 = 34,4 см2
3. S=(6+9)*3,5=52,5 см2
4. на фото решение
Дано :
∠1 = 70°.
∠2 = 100°.
∠3 = 80°.
Найти :
∠α = ?
Рассмотрим внутренние односторонние ∠3 и ∠2 при пересечении прямых АВ и CD секущей АС.
Если при пересечении двух прямых секущей сумма двух внутренних односторонних углов равна 180°, то эти прямые параллельны.
Так как -
∠3 + ∠2 = 80° + 100°
∠3 + ∠2 = 180°
То по выше сказанному -
АВ ║ CD.
При пересечении двух параллельных прямых секущей внутренние накрест лежащие углы равны.
Рассмотрим эти же прямые, но только тогда, когда они пересечены секущей BD.
По выше сказанному -
∠1 = ∠α
∠1 = 70°.
70°.