Алтын сақаның бас қаһарманы, идеялық нысанасы - халықтың арман-мұраты. Мұнда да халықтың аңсары ертегінің басты арқауы. Қазақ ертегілерінің бас қаһармандары аңшы-мерген, жауынгер-батыр, кенже бала, тазша бала, жалғыз бала және басқа әлеуметтік теңсіздіктегі бұқара өкілі. Бұлардың бәрі - халық арманынан әр кезде туған идеал кейіпкерлер. «Алтын сақадағы» бала сондай кейіпкер. Онда классикалық батырлық ертегіге тән белгілердің бәрі бар. Бала жұртта қалып қойған алтын сақасын алып келуге барып, жалмауыз кемпірге кез болған бала кемпірдің алдағанына сенбей, сақасын ат үстінен іліп алып, қаша жөнеледі. Мыстан кемпір тұра қуады. Осымен оқиға шиеленісе түседі. Бұл ертегіде де сайыста кейіпкер өз күшімен емес, керемет достарының арқасында жеңуі - батырлықтан гөрі қиял-ғажайып ертегінің заңдылықтарына жақындау.
Две стороны параллелограмма заданы уравнениями 2x-y+5=0 (это прямая АВ) и x-2y+4=0 (это прямая АД), его диагонали пересекаются в точке О(1,4). Найти длины его высот.
Находим координаты точка А как точки пересечения сторон.
2x-y+5=0 |x(-2) -4x+2y-10=0
x-2y+4=0 x-2y+4=0
-3x - 6 = 0,
x(A) = -6/3 = -2,
y(A) = 2x - 5 = 2*(-2) + 5 = 1.
Находим точку С как симметричную точке А относительно точке пересечения диагоналей (это точка О).
х(С) = 2х(О) - х(А) = 2*1 - (-2) = 4,
у(С) = 2у(О) - у(А) = 2*4 - 1 = 7.
Через точку С проводим прямую, параллельную АД.
Выражаем уравнение АД относительно у: у(АД) = (1/2)х + 2.
Угловой коэффициент параллельной прямой сохраняется.
у(ВС) = (1/2)х + в. Подставим координаты точки С.
7 = (1/2)*4 + в, откуда находим в = 7 - 2 = 5.
Уравнение ВС: у = (1/2)х + 5.
Находим координаты точки В кк точки пересечения АВ и ВС.
2х + 5 = (1/2)х + 5, отсюда следует х = 0, у = 5.
Координаты точки Д находим как симметричную точке В относительно точки О: х(Д) = 2*1 - 0 = 2, у(Д) = 2*4 - 5 = 3.
Алтын сақаның бас қаһарманы, идеялық нысанасы - халықтың арман-мұраты. Мұнда да халықтың аңсары ертегінің басты арқауы. Қазақ ертегілерінің бас қаһармандары аңшы-мерген, жауынгер-батыр, кенже бала, тазша бала, жалғыз бала және басқа әлеуметтік теңсіздіктегі бұқара өкілі. Бұлардың бәрі - халық арманынан әр кезде туған идеал кейіпкерлер. «Алтын сақадағы» бала сондай кейіпкер. Онда классикалық батырлық ертегіге тән белгілердің бәрі бар. Бала жұртта қалып қойған алтын сақасын алып келуге барып, жалмауыз кемпірге кез болған бала кемпірдің алдағанына сенбей, сақасын ат үстінен іліп алып, қаша жөнеледі. Мыстан кемпір тұра қуады. Осымен оқиға шиеленісе түседі. Бұл ертегіде де сайыста кейіпкер өз күшімен емес, керемет достарының арқасында жеңуі - батырлықтан гөрі қиял-ғажайып ертегінің заңдылықтарына жақындау.
Две стороны параллелограмма заданы уравнениями 2x-y+5=0 (это прямая АВ) и x-2y+4=0 (это прямая АД), его диагонали пересекаются в точке О(1,4). Найти длины его высот.
Находим координаты точка А как точки пересечения сторон.
2x-y+5=0 |x(-2) -4x+2y-10=0
x-2y+4=0 x-2y+4=0
-3x - 6 = 0,
x(A) = -6/3 = -2,
y(A) = 2x - 5 = 2*(-2) + 5 = 1.
Находим точку С как симметричную точке А относительно точке пересечения диагоналей (это точка О).
х(С) = 2х(О) - х(А) = 2*1 - (-2) = 4,
у(С) = 2у(О) - у(А) = 2*4 - 1 = 7.
Через точку С проводим прямую, параллельную АД.
Выражаем уравнение АД относительно у: у(АД) = (1/2)х + 2.
Угловой коэффициент параллельной прямой сохраняется.
у(ВС) = (1/2)х + в. Подставим координаты точки С.
7 = (1/2)*4 + в, откуда находим в = 7 - 2 = 5.
Уравнение ВС: у = (1/2)х + 5.
Находим координаты точки В кк точки пересечения АВ и ВС.
2х + 5 = (1/2)х + 5, отсюда следует х = 0, у = 5.
Координаты точки Д находим как симметричную точке В относительно точки О: х(Д) = 2*1 - 0 = 2, у(Д) = 2*4 - 5 = 3.
Находим длины сторон.
AB (c) = √((xB-xA)² + (yB-yA)²) = 20 4,472135955
BC (a) = √((xC-xB)² + (yC-yB)²) = 20 4,472135955
CD = √((xD-xC)² + (yD-yC)²) = 20 4,472135955
AD = √((xC-xA)² + (yC-yA)²) = 20 4,472135955 .
Находим длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = 72 8,485281374
BD = √((xD-xB)² + (yD-yB)²) = 8 2,828427125 .
Как видим, это ромб.
Его площадь S = (1/2)*AC*BD = (1/2)*V72*V8 = 12.
Высоты равны h = S/a = 12/V20 = 12/(2V5) = 6V5/5.