Смотрим образовавшийся прямоугольный (т.к. медиана в равностороннем треугольнике является и высотой, и биссектрисой) треугольник: Т.к. она является и биссектрисой, то угол поделится пополам, т.е. будет равен = 30. Дальше воспользуемся тригонометрией, а именно косинусом (напомню, косинус - отношение прилежащего катета к гипотенузе): cos 30=√3/2 √3/2=9√3/x √3х=18√3 х=18 (см) - сторона треугольника. Если есть желание, можешь расковырять через теорему Пифагора, обозначив второй катет за х, а гипотенузу за 2х. ответ получится абсолютно тот же.
Из площади трапеции ABCD найдем высоту трапеции CH
\displaystyle \tt S_{ABCD}=\frac{AD+BC}{2}\cdot CH~~~\Rightarrow~~~ CH=\frac{2S_{ABCD}}{AD+BC} =\frac{2\cdot84}{4+3}= 24S
ABCD
=
2
AD+BC
⋅CH ⇒ CH=
AD+BC
2S
ABCD
=
4+3
2⋅84
=24
Так как AD || MN и BC || MN, то CK ⊥ MN. Высота CK в два раза меньше высоты CH, т.е. CK = 24/2 = 12.
Средняя линия трапеции равна полусумме основания,т.е.
\tt MN=\dfrac{AD+BC}{2}=\dfrac{4+3}{2}=3.5MN=
2
AD+BC
=
2
4+3
=3.5
\tt S_{BCNM}=\dfrac{MN+BC}{2}\cdot CK =\dfrac{3.5+3}{2}\cdot12= 57S
BCNM
=
2
MN+BC
⋅CK=
2
3.5+3
⋅12=57 кв. ед.
ответ: 57 кв. ед..
Т.к. она является и биссектрисой, то угол поделится пополам, т.е. будет равен = 30. Дальше воспользуемся тригонометрией, а именно косинусом (напомню, косинус - отношение прилежащего катета к гипотенузе):
cos 30=√3/2
√3/2=9√3/x
√3х=18√3
х=18 (см) - сторона треугольника.
Если есть желание, можешь расковырять через теорему Пифагора, обозначив второй катет за х, а гипотенузу за 2х. ответ получится абсолютно тот же.