АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
1. CD = AB = 12 см как противоположные стороны параллелограмма. Высота ВН делит CD пополам, значит CH = HD = CD/2 = 12/2 = 6 см
ΔСВН прямоугольный с углом 30°, значит гипотенуза в два раза больше катета, лежащего напротив угла в 30°. СВ = 2СН = 12 см. Pabcd = (AB + BC)·2 = (12 + 12)·2 = 48 см
2. Противолежащие углы параллелограмма равны, значит углы А и С равны, значит равны и их половинки. ∠ВМА = ∠МАК как накрест лежащие при пересечении ВС║AD секущей АМ. ∠ВАМ = ∠МАК так как АМ биссектриса, ⇒ ∠ВМА = ∠ВАМ и значит ΔВАМ равнобедренный. ВА = ВМ = 6 см
∠ВМА = ∠МСК, а это соответственные углы при пересечении прямых АМ и СК секущей ВС, значит АМ║СК, СМ║АК так как лежат на противоположных сторонах параллелограмма, значит АМСК - параллелограмм, ⇒ МС = АК = 4 см
ВС = 6 + 4 = 10 см
Pabcd = (AB + BC)·2 = (6 + 10)·2 = 32 см
3. ∠BOD - внешний угол треугольника ВОК, равен сумме двух внутренних, не смежных с ним. ∠ОВК = 140° - 110° = 30°
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3 / (2√(5 - 4cos80°))
BB₁ = 3x = 9 / (2√(5 - 4cos80°)) или
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Высота ВН делит CD пополам, значит
CH = HD = CD/2 = 12/2 = 6 см
ΔСВН прямоугольный с углом 30°, значит гипотенуза в два раза больше катета, лежащего напротив угла в 30°.
СВ = 2СН = 12 см.
Pabcd = (AB + BC)·2 = (12 + 12)·2 = 48 см
2. Противолежащие углы параллелограмма равны, значит углы А и С равны, значит равны и их половинки.
∠ВМА = ∠МАК как накрест лежащие при пересечении ВС║AD секущей АМ.
∠ВАМ = ∠МАК так как АМ биссектриса, ⇒
∠ВМА = ∠ВАМ и значит ΔВАМ равнобедренный.
ВА = ВМ = 6 см
∠ВМА = ∠МСК, а это соответственные углы при пересечении прямых АМ и СК секущей ВС, значит
АМ║СК,
СМ║АК так как лежат на противоположных сторонах параллелограмма, значит
АМСК - параллелограмм, ⇒
МС = АК = 4 см
ВС = 6 + 4 = 10 см
Pabcd = (AB + BC)·2 = (6 + 10)·2 = 32 см
3. ∠BOD - внешний угол треугольника ВОК, равен сумме двух внутренних, не смежных с ним.
∠ОВК = 140° - 110° = 30°
ΔВМС: ∠ВМС = 90°, ∠МВС = 30°, ⇒ ∠ВСМ = 90° - 30° = 60° (сумма острых углов прямоугольного треугольника равна 90°)
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠CDA = 180° - ∠BCD = 180° - 60° = 120°
Противолежащие углы параллелограмма равны.
ответ: 60°, 60°, 120°, 120°